Advertisements
Advertisements
Question
If A and B are sets, then prove that \[A - B, A \cap B \text{ and } B - A\] are pair wise disjoint.
Solution
\[\left( i \right) \left( A - B \right) \text{ 0and } \left( A \cap B \right)\]
\[\text{ Let } a \in A - B\]
\[ \Rightarrow a \in A \text{ and } a \not\in B\]
\[ \Rightarrow a \not\in A \cap B\]
\[\text{ Hence }, \left( A - B \right) \text{ and } A \cap B \text{ are disjoint sets } . \]
\[\left( ii \right) \left( B - A \right) and \left( A \cap B \right)\]
\[\text{ Let } a \in B - A\]
\[ \Rightarrow a \in B \text{ and } a \not\in A\]
\[ \Rightarrow a \not\in A \cap B\]
\[\text{ Hence }, \left( B - A \right) \text{ and } A \cap B \text{ are disjoint sets } . \]
\[\left( iii \right) \left( A - B \right) \text{ and } \left( B - A \right)\]
\[\left( A - B \right) = \left\{ x: x \in A \text{ and }x \not\in B \right\}\]
\[\left( B - A \right) = \left\{ x: x \in B \text{ and } x \not\in A \right\}\]
\[Hence, \left( A - B \right) \text{ and } \left( B - A \right) \text{ are disjoint sets } . \]
APPEARS IN
RELATED QUESTIONS
What universal set (s) would you propose for the following:
The set of right triangles.
What universal set (s) would you propose for the following:
The set of isosceles triangles.
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
{0, 1, 2, 3, 4, 5, 6}
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
If \[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] \[X \subseteq Y .\]
If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:
\[\left( A \cup B \right)' = A' \cap B'\]
If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:
\[\left( A \cap B \right)' = A'B' .\]
For three sets A, B and C, show that \[A \cap B = A \cap C\]
For three sets A, B and C, show that \[A \subset B \Rightarrow C - B \subset C - A\]
For any two sets, prove that:
\[A \cup \left( A \cap B \right) = A\]
Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\]
For any two sets of A and B, prove that:
\[A' \cup B = U \Rightarrow A \subset B\]
For any two sets of A and B, prove that:
\[B' \subset A' \Rightarrow A \subset B\]
Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)
For any two sets A and B, prove that :
\[A' - B' = B - A\]
For any two sets A and B, prove the following:
\[A \cap \left( A' \cup B \right) = A \cap B\]
For any two sets A and B, prove the following:
\[A - \left( A - B \right) = A \cap B\]
For any two sets A and B, prove the following:
\[A \cap \left( A \cup B \right)' = \phi\]
For any two sets A and B, prove the following:
\[A - B = A \Delta\left( A \cap B \right)\]
Let A and B be two sets such that : \[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] \[n \left( B - A \right)\]
A survey shows that 76% of the Indians like oranges, whereas 62% like bananas. What percentage of the Indians like both oranges and bananas?
In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: how many can speak Hindi only
Let A and B be two sets in the same universal set. Then,\[A - B =\]
Let U be the universal set containing 700 elements. If A, B are sub-sets of U such that \[n \left( A \right) = 200, n \left( B \right) = 300 \text{ and } \left( A \cap B \right) = 100\].Then \[n \left( A' \cap B' \right) =\]
Let A and B be two sets that \[n \left( A \right) = 16, n \left( B \right) = 14, n \left( A \cup B \right) = 25\] Then, \[n \left( A \cap B \right)\]
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ D
If X and Y are subsets of the universal set U, then show that Y ⊂ X ∪ Y
If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X
Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy newspaper A only.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C
Given the sets A = {1, 3, 5}. B = {2, 4, 6} and C = {0, 2, 4, 6, 8}. Then the universal set of all the three sets A, B and C can be ______.
Match the following sets for all sets A, B, and C.
Column A | Column B |
(i) ((A′ ∪ B′) – A)′ | (a) A – B |
(ii) [B′ ∪ (B′ – A)]′ | (b) A |
(iii) (A – B) – (B – C) | (c) B |
(iv) (A – B) ∩ (C – B) | (d) (A × B) ∩ (A × C) |
(v) A × (B ∩ C) | (e) (A × B) ∪ (A × C) |
(vi) A × (B ∪ C) | (f) (A ∩ C) – B |