English

In a Group of 950 Persons, 750 Can Speak Hindi and 460 Can Speak English. Find: How Many Can Speak Hindi Only - Mathematics

Advertisements
Advertisements

Question

In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: how many can speak Hindi only

Solution

Let A & B denote the sets of the persons who like Hindi & English, respectively. 

\[\text{ Given }: \]
\[n\left( A \right) = 750\]
\[n\left( B \right) = 460\]
\[n\left( A \cup B \right) = 950\] 

\[ n\left( A - B \right) = n\left( A \right) - n\left( A \cap B \right)\]
\[n\left( A - B \right) = 750 - 260 = 490\]
\[\text{ Thus, 490 persons can speak only Hindi } . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets - Exercise 1.08 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 1 Sets
Exercise 1.08 | Q 7.2 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

What universal set (s) would you propose for the following:

The set of isosceles triangles.


Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

{1, 2, 3, 4, 5, 6, 7, 8}


If \[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] \[X \subseteq Y .\]


For any two sets A and B, prove that 

 B ⊂ A ∪ B         


For any two sets A and B, prove that 

A ∩ ⊂ A             


For any two sets A and B, prove that A ⊂ ⇒ A ∩ 


For any two sets A and B, show that the following statements are equivalent:

(i) \[A \subset B\] 

(ii) \[A \subset B\]=ϕ 

(iii) \[A \cup B = B\]

(iv) \[A \cap B = A .\] 


For three sets AB and C, show that \[A \cap B = A \cap C\]


For three sets AB and C, show that \[A \subset B \Rightarrow C - B \subset C - A\] 


For any two sets, prove that: 

\[A \cup \left( A \cap B \right) = A\] 

 


Find sets AB and C such that \[A \cap B, A \cap C \text{ and } B \cap C\]are non-empty sets and\[A \cap B \cap C = \phi\]


For any two sets A and B, prove that: \[A \cap B = \phi \Rightarrow A \subseteq B'\] 


Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\] 


For any two sets of A and B, prove that: 

\[A' \cup B = U \Rightarrow A \subset B\] 


For any two sets of A and B, prove that: 

\[B' \subset A' \Rightarrow A \subset B\]


Is it true that for any sets A and \[B, P \left( A \right) \cup P \left( B \right) = P \left( A \cup B \right)\]? Justify your answer.


Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)


For any two sets A and B, prove that : 

\[A' - B' = B - A\] 


For any two sets A and B, prove the following: 

\[A \cap \left( A' \cup B \right) = A \cap B\] 


For any two sets A and B, prove the following: 

\[A - \left( A - B \right) = A \cap B\]


For any two sets A and B, prove the following: 

\[A \cap \left( A \cup B \right)' = \phi\] 


For any two sets A and B, prove the following:

\[A - B = A \Delta\left( A \cap B \right)\]


A survey shows that 76% of the Indians like oranges, whereas 62% like bananas. What percentage of the Indians like both oranges and bananas? 


In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: 

how many can speak English only. 


Let A and B be two sets in the same universal set. Then,\[A - B =\]


Let A and B be two sets that \[n \left( A \right) = 16, n \left( B \right) = 14, n \left( A \cup B \right) = 25\] Then, \[n \left( A \cap B \right)\] 


If X and Y are subsets of the universal set U, then show that X ∩ Y ⊂ X


If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X


In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.


In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C


If A = {1, 3, 5, 7, 9, 11, 13, 15, 17} B = {2, 4, ..., 18} and N the set of natural numbers is the universal set, then A′ ∪ (A ∪ B) ∩ B′) is ______.


Match the following sets for all sets A, B, and C.

Column A Column B
(i) ((A′ ∪ B′) – A)′ (a) A – B
(ii) [B′ ∪ (B′ – A)]′ (b) A
(iii) (A – B) – (B – C) (c) B
(iv) (A – B) ∩ (C – B) (d) (A × B) ∩ (A × C)
(v) A × (B ∩ C) (e) (A × B) ∪ (A × C)
(vi) A × (B ∪ C) (f) (A ∩ C) – B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×