Advertisements
Advertisements
Question
For any two sets A and B, show that the following statements are equivalent:
(i) \[A \subset B\]
(ii) \[A \subset B\]=ϕ
(iii) \[A \cup B = B\]
(iv) \[A \cap B = A .\]
Solution
We have that the following statements are equivalent:
(i) \[A \subset B\]
(ii) \[A \subset B\]
(iii) \[A \cup B = B\]
(iv) \[A \cap B = A\]
Proof:
\[\text{ Let } A \subset B\]
\[\text{ Let } x \text{ be an arbitary element of } (A - B) . \]
\[\text{ Now }, \]
\[x \text{ in } (A - B)\]
\[ \Rightarrow x \text{ in A & x } \text{ not }\text{ in } B (\text{ Which is contradictory }) \]
\[\text{ Also }, \]
\[ \text{ because } A \text{ subset } B\]
\[ \Rightarrow A - B \text{ subseteq } \phi . . . (1) \]
\[\text{ We know that null sets are the subsets of every set } . \]
\[ \text{ therefore } \text{ phi } \text{ subseteq } A - B . . . (2)\]
\[\text{ From } (1) \text{ & } (2), \text{ we get } \]
\[(A - B) = \phi\]
\[ \text{ therefore } (i) = (ii)\]
\[\text{ Now, we have }, \]
\[(A - B) = \text{ phi }\]
\[\text{ That means that there is no element in A that does not belong to B } . \]
\[\text{ Now }, \]
\[ A \text{ cup } B = B\]
\[ \text{ therefore } (ii) = (iii) \]
\[\text{ We have }, \]
\[A \text{ cup } B = B\]
\[ \Rightarrow A \text{ subset } B\]
\[ \Rightarrow A \text{ cap } B = A\]
\[ \text{ therefore } (iii) = (iv)\]
\[\text{ We have }, \]
\[ A \text{ cap } B = A\]
\[\text{ It should be possible if A } \text{ subset B } . \]
\[\text{ Now }, \]
\[A \text{ subset } B\]
\[ \text{ therefore } (iv) = (i)\]
\[\text{ We have }, \]
\[(i) = (ii) = (iii) = (iv) \]
\[\text{ Therefore, we can say that all statements are equivalent } . \]
APPEARS IN
RELATED QUESTIONS
What universal set (s) would you propose for the following:
The set of right triangles.
For three sets A, B and C, show that \[A \cap B = A \cap C\]
For three sets A, B and C, show that \[A \subset B \Rightarrow C - B \subset C - A\]
For any two sets, prove that:
\[A \cup \left( A \cap B \right) = A\]
Find sets A, B and C such that \[A \cap B, A \cap C \text{ and } B \cap C\]are non-empty sets and\[A \cap B \cap C = \phi\]
For any two sets A and B, prove that: \[A \cap B = \phi \Rightarrow A \subseteq B'\]
If A and B are sets, then prove that \[A - B, A \cap B \text{ and } B - A\] are pair wise disjoint.
Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\]
For any two sets of A and B, prove that:
\[A' \cup B = U \Rightarrow A \subset B\]
Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)
Show that for any sets A and B, A ∪ (B – A) = (A ∪ B)
For any two sets A and B, prove that :
\[A' - B' = B - A\]
For any two sets A and B, prove the following:
\[A \cap \left( A \cup B \right)' = \phi\]
For any two sets A and B, prove the following:
\[A - B = A \Delta\left( A \cap B \right)\]
Let A and B be two sets such that : \[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] \[n \left( A - B \right)\]
Let A and B be two sets such that : \[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] \[n \left( B - A \right)\]
In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find:
how many can speak English only.
Let U be the universal set containing 700 elements. If A, B are sub-sets of U such that \[n \left( A \right) = 200, n \left( B \right) = 300 \text{ and } \left( A \cap B \right) = 100\].Then \[n \left( A' \cap B' \right) =\]
Let A and B be two sets that \[n \left( A \right) = 16, n \left( B \right) = 14, n \left( A \cup B \right) = 25\] Then, \[n \left( A \cap B \right)\]
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ C
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ D
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ B ∪ D
If X and Y are subsets of the universal set U, then show that X ∩ Y ⊂ X
If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X
If A and B are subsets of the universal set U, then show that A ⊂ A ∪ B
A, B and C are subsets of Universal Set U. If A = {2, 4, 6, 8, 12, 20} B = {3, 6, 9, 12, 15}, C = {5, 10, 15, 20} and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.
Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy newspaper A only.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C
The set (A ∩ B′)′ ∪ (B ∩ C) is equal to ______.
If A = {1, 3, 5, 7, 9, 11, 13, 15, 17} B = {2, 4, ..., 18} and N the set of natural numbers is the universal set, then A′ ∪ (A ∪ B) ∩ B′) is ______.
For all sets A and B, A – (A ∩ B) is equal to ______.
Match the following sets for all sets A, B, and C.
Column A | Column B |
(i) ((A′ ∪ B′) – A)′ | (a) A – B |
(ii) [B′ ∪ (B′ – A)]′ | (b) A |
(iii) (A – B) – (B – C) | (c) B |
(iv) (A – B) ∩ (C – B) | (d) (A × B) ∩ (A × C) |
(v) A × (B ∩ C) | (e) (A × B) ∪ (A × C) |
(vi) A × (B ∪ C) | (f) (A ∩ C) – B |