Advertisements
Advertisements
Question
In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find:
how many can speak English only.
Solution
Let A & B denote the sets of the persons who like Hindi & English, respectively.
\[\text{ Given }: \]
\[n\left( A \right) = 750\]
\[n\left( B \right) = 460\]
\[n\left( A \cup B \right) = 950\]
\[n\left( B - A \right) = n\left( B \right) - n\left( A \cap B \right)\]
\[ \Rightarrow n\left( B - A \right) = 460 - 260\]
\[ = 200\]
\[\text{ Thus, 200 persons can speak only English } .\]
APPEARS IN
RELATED QUESTIONS
What universal set (s) would you propose for the following:
The set of right triangles.
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
{0, 1, 2, 3, 4, 5, 6}
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
Φ
Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
{1, 2, 3, 4, 5, 6, 7, 8}
If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:
\[\left( A \cap B \right)' = A'B' .\]
For any two sets A and B, show that the following statements are equivalent:
(i) \[A \subset B\]
(ii) \[A \subset B\]=ϕ
(iii) \[A \cup B = B\]
(iv) \[A \cap B = A .\]
For three sets A, B and C, show that \[A \cap B = A \cap C\]
For three sets A, B and C, show that \[A \subset B \Rightarrow C - B \subset C - A\]
Find sets A, B and C such that \[A \cap B, A \cap C \text{ and } B \cap C\]are non-empty sets and\[A \cap B \cap C = \phi\]
Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\]
For any two sets of A and B, prove that:
\[A' \cup B = U \Rightarrow A \subset B\]
Is it true that for any sets A and \[B, P \left( A \right) \cup P \left( B \right) = P \left( A \cup B \right)\]? Justify your answer.
Show that for any sets A and B, A ∪ (B – A) = (A ∪ B)
For any two sets A and B, prove the following:
\[A \cap \left( A' \cup B \right) = A \cap B\]
For any two sets A and B, prove the following:
\[A \cap \left( A \cup B \right)' = \phi\]
In a survey it was found that 21 persons liked product P1, 26 liked product P2 and 29 liked product P3. If 14 persons liked products P1 and P2; 12 persons liked product P3 and P1 ; 14 persons liked products P2 and P3 and 8 liked all the three products. Find how many liked product P3 only.
Let A and B be two sets that \[n \left( A \right) = 16, n \left( B \right) = 14, n \left( A \cup B \right) = 25\] Then, \[n \left( A \cap B \right)\]
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ B ∪ C
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ C ∪ D
If X and Y are subsets of the universal set U, then show that Y ⊂ X ∪ Y
If X and Y are subsets of the universal set U, then show that X ∩ Y ⊂ X
If A and B are subsets of the universal set U, then show that A ⊂ B ⇔ A ∪ B = B
If A and B are subsets of the universal set U, then show that (A ∩ B) ⊂ A
Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy newspaper A only.
The set (A ∩ B′)′ ∪ (B ∩ C) is equal to ______.
Given the sets A = {1, 3, 5}. B = {2, 4, 6} and C = {0, 2, 4, 6, 8}. Then the universal set of all the three sets A, B and C can be ______.
Match the following sets for all sets A, B, and C.
Column A | Column B |
(i) ((A′ ∪ B′) – A)′ | (a) A – B |
(ii) [B′ ∪ (B′ – A)]′ | (b) A |
(iii) (A – B) – (B – C) | (c) B |
(iv) (A – B) ∩ (C – B) | (d) (A × B) ∩ (A × C) |
(v) A × (B ∩ C) | (e) (A × B) ∪ (A × C) |
(vi) A × (B ∪ C) | (f) (A ∩ C) – B |