Advertisements
Advertisements
Question
In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.
Solution
Given: Total number of students = 200
Number of students study Mathematics = 120
Number of students study Physics = 90
Number of students study Chemistry = 70
Number of students study Mathematics and Physics = 40
Number of students study Mathematics and Chemistry = 50
Number of students study Physics and Chemistry = 30
Number of students study none of them = 20
Let U be the total number of students, P, M and C be the number of students study Physics, Mathematics and Chemistry respectively
To find: Number of students who study all the three subjects n(M ∩ P ∩ C)
n(U) = 200
n(M) = 120
n(P) = 90
n(C) = 70
n(M ∩ P) = 40
n(M ∩ C) = 50
n(P ∩ C) = 30
Number of students who play either of them = n(P ∪ M ∪ C)
= Total – None of them
= 200 – 20
= 180 ........(i)
Number of students who play either of them = n(P ∪ M ∪ C)
= n(C) + n(P) + n(M) – n(M ∩ P) – n(M ∩ C) – n(P ∩ C) + n(P ∩ M ∩ C)
= 120 + 90 + 70 – 40 – 30 – 50 + n(P ∩ M ∩ C)
= 160 + n(P ∩ M ∩ C) .......(ii)
From (i) and (ii)
160 + n(P ∩ M ∩ C) = 180
⇒ n(P ∩ M ∩ C) = 180 – 160
⇒ n(P ∩ M ∩ C) = 20
Hence, there are 20 students who study all three subjects.
APPEARS IN
RELATED QUESTIONS
Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
{1, 2, 3, 4, 5, 6, 7, 8}
If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:
\[\left( A \cup B \right)' = A' \cap B'\]
For any two sets A and B, show that the following statements are equivalent:
(i) \[A \subset B\]
(ii) \[A \subset B\]=ϕ
(iii) \[A \cup B = B\]
(iv) \[A \cap B = A .\]
For any two sets, prove that:
\[A \cap \left( A \cup B \right) = A\]
Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\]
For any two sets of A and B, prove that:
\[A' \cup B = U \Rightarrow A \subset B\]
Is it true that for any sets A and \[B, P \left( A \right) \cup P \left( B \right) = P \left( A \cup B \right)\]? Justify your answer.
Show that for any sets A and B, A ∪ (B – A) = (A ∪ B)
For any two sets A and B, prove that :
\[A' - B' = B - A\]
For any two sets A and B, prove the following:
\[A - \left( A - B \right) = A \cap B\]
For any two sets A and B, prove the following:
\[A - B = A \Delta\left( A \cap B \right)\]
A survey shows that 76% of the Indians like oranges, whereas 62% like bananas. What percentage of the Indians like both oranges and bananas?
In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: how many can speak Hindi only
In a survey it was found that 21 persons liked product P1, 26 liked product P2 and 29 liked product P3. If 14 persons liked products P1 and P2; 12 persons liked product P3 and P1 ; 14 persons liked products P2 and P3 and 8 liked all the three products. Find how many liked product P3 only.
Let A and B be two sets in the same universal set. Then,\[A - B =\]
Let A and B be two sets that \[n \left( A \right) = 16, n \left( B \right) = 14, n \left( A \cup B \right) = 25\] Then, \[n \left( A \cap B \right)\]
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ C
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ D
If A and B are subsets of the universal set U, then show that A ⊂ A ∪ B
If A and B are subsets of the universal set U, then show that A ⊂ B ⇔ A ∪ B = B
If A and B are subsets of the universal set U, then show that (A ∩ B) ⊂ A
A, B and C are subsets of Universal Set U. If A = {2, 4, 6, 8, 12, 20} B = {3, 6, 9, 12, 15}, C = {5, 10, 15, 20} and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C
For all sets A and B, A – (A ∩ B) is equal to ______.