हिंदी

In a Group of 950 Persons, 750 Can Speak Hindi and 460 Can Speak English. Find: How Many Can Speak English Only. - Mathematics

Advertisements
Advertisements

प्रश्न

In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: 

how many can speak English only. 

उत्तर

Let A & B denote the sets of the persons who like Hindi & English, respectively. 

\[\text{ Given }: \]
\[n\left( A \right) = 750\]
\[n\left( B \right) = 460\]
\[n\left( A \cup B \right) = 950\]

\[n\left( B - A \right) = n\left( B \right) - n\left( A \cap B \right)\]
\[ \Rightarrow n\left( B - A \right) = 460 - 260\]
\[ = 200\]
\[\text{ Thus, 200 persons can speak only English } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Sets - Exercise 1.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 1 Sets
Exercise 1.08 | Q 7.3 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

What universal set (s) would you propose for the following:

The set of right triangles.


What universal set (s) would you propose for the following:

The set of isosceles triangles.


Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

{0, 1, 2, 3, 4, 5, 6}


Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

Φ


If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:

\[\left( A \cap B \right)' = A'B' .\]

 


For any two sets A and B, prove that 

 B ⊂ A ∪ B         


For any two sets A and B, prove that 

A ∩ ⊂ A             


For three sets AB and C, show that \[A \subset B \Rightarrow C - B \subset C - A\] 


For any two sets, prove that: 

\[A \cup \left( A \cap B \right) = A\] 

 


Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\] 


For any two sets of A and B, prove that: 

\[B' \subset A' \Rightarrow A \subset B\]


Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)


Show that for any sets A and B, A ∪ (B – A) = (A ∪ B)


Each set X, contains 5 elements and each set Y, contains 2 elements and \[\cup^{20}_{r = 1} X_r = S = \cup^n_{r = 1} Y_r\] If each element of S belong to exactly 10 of the Xr's and to eactly 4 of Yr's, then find the value of n.


For any two sets A and B, prove the following: 

\[A \cap \left( A' \cup B \right) = A \cap B\] 


For any two sets A and B, prove the following: 

\[A - \left( A - B \right) = A \cap B\]


For any two sets A and B, prove the following: 

\[A \cap \left( A \cup B \right)' = \phi\] 


For any two sets A and B, prove the following:

\[A - B = A \Delta\left( A \cap B \right)\]


Let A and B be two sets such that : \[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] \[n \left( A - B \right)\]


Let A and B be two sets such that : \[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] \[n \left( B - A \right)\]


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

B ∪ C


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

B ∪ D


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ B ∪ C


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

B ∪ C ∪ D


If X and Y are subsets of the universal set U, then show that Y ⊂ X ∪ Y


If X and Y are subsets of the universal set U, then show that X ∩ Y ⊂ X


If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X


If A and B are subsets of the universal set U, then show that A ⊂ A ∪ B


A, B and C are subsets of Universal Set U. If A = {2, 4, 6, 8, 12, 20} B = {3, 6, 9, 12, 15}, C = {5, 10, 15, 20} and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.


Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)


In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C


Match the following sets for all sets A, B, and C.

Column A Column B
(i) ((A′ ∪ B′) – A)′ (a) A – B
(ii) [B′ ∪ (B′ – A)]′ (b) A
(iii) (A – B) – (B – C) (c) B
(iv) (A – B) ∩ (C – B) (d) (A × B) ∩ (A × C)
(v) A × (B ∩ C) (e) (A × B) ∪ (A × C)
(vi) A × (B ∪ C) (f) (A ∩ C) – B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×