Advertisements
Advertisements
प्रश्न
If X and Y are subsets of the universal set U, then show that Y ⊂ X ∪ Y
उत्तर
X ∪ Y = {x | x ∈ X or x ∈ Y}
Thus x ∈ Y
⇒ x ∈ X ∪ Y
Hence, Y ⊂ X ∪ Y
APPEARS IN
संबंधित प्रश्न
If \[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] \[X \subseteq Y .\]
For any two sets A and B, show that the following statements are equivalent:
(i) \[A \subset B\]
(ii) \[A \subset B\]=ϕ
(iii) \[A \cup B = B\]
(iv) \[A \cap B = A .\]
For three sets A, B and C, show that \[A \subset B \Rightarrow C - B \subset C - A\]
For any two sets, prove that:
\[A \cup \left( A \cap B \right) = A\]
For any two sets A and B, prove that: \[A \cap B = \phi \Rightarrow A \subseteq B'\]
If A and B are sets, then prove that \[A - B, A \cap B \text{ and } B - A\] are pair wise disjoint.
For any two sets of A and B, prove that:
\[A' \cup B = U \Rightarrow A \subset B\]
Is it true that for any sets A and \[B, P \left( A \right) \cup P \left( B \right) = P \left( A \cup B \right)\]? Justify your answer.
Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)
Show that for any sets A and B, A ∪ (B – A) = (A ∪ B)
Each set X, contains 5 elements and each set Y, contains 2 elements and \[\cup^{20}_{r = 1} X_r = S = \cup^n_{r = 1} Y_r\] If each element of S belong to exactly 10 of the Xr's and to eactly 4 of Yr's, then find the value of n.
For any two sets A and B, prove the following:
\[A \cap \left( A \cup B \right)' = \phi\]
In a survey it was found that 21 persons liked product P1, 26 liked product P2 and 29 liked product P3. If 14 persons liked products P1 and P2; 12 persons liked product P3 and P1 ; 14 persons liked products P2 and P3 and 8 liked all the three products. Find how many liked product P3 only.
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ C
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ B ∪ C
If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X
If A and B are subsets of the universal set U, then show that (A ∩ B) ⊂ A
A, B and C are subsets of Universal Set U. If A = {2, 4, 6, 8, 12, 20} B = {3, 6, 9, 12, 15}, C = {5, 10, 15, 20} and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.
Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy newspaper A only.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C
If A = {1, 3, 5, 7, 9, 11, 13, 15, 17} B = {2, 4, ..., 18} and N the set of natural numbers is the universal set, then A′ ∪ (A ∪ B) ∩ B′) is ______.
Given the sets A = {1, 3, 5}. B = {2, 4, 6} and C = {0, 2, 4, 6, 8}. Then the universal set of all the three sets A, B and C can be ______.
Match the following sets for all sets A, B, and C.
Column A | Column B |
(i) ((A′ ∪ B′) – A)′ | (a) A – B |
(ii) [B′ ∪ (B′ – A)]′ | (b) A |
(iii) (A – B) – (B – C) | (c) B |
(iv) (A – B) ∩ (C – B) | (d) (A × B) ∩ (A × C) |
(v) A × (B ∩ C) | (e) (A × B) ∪ (A × C) |
(vi) A × (B ∪ C) | (f) (A ∩ C) – B |