English

For Any Two Sets a and B, Prove that a ⊂ B ⇒ a ∩ B = a - Mathematics

Advertisements
Advertisements

Question

For any two sets A and B, prove that A ⊂ ⇒ A ∩ 

Solution

Let A ⊂ B. We need to prove A ∩ A.
For all x ∈ A
⇒ x ∈ A and x ∈ B          (A ⊂ B)
⇒ x ∈ A ∩ B 
⇒ A ⊂ A ∩ B    
Also, A ∩ ⊂ A
Thus, A ⊂ A ∩ B and A ∩ ⊂ A
⇒ A ∩ A         [Proved in (ii)]
∴ A ⊂ ⇒ A ∩ A

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets - Exercise 1.06 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 1 Sets
Exercise 1.06 | Q 4.3 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

{0, 1, 2, 3, 4, 5, 6}


Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

Φ


If \[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] \[X \subseteq Y .\]


For any two sets A and B, prove that 

A ∩ ⊂ A             


For three sets AB and C, show that \[A \subset B \Rightarrow C - B \subset C - A\] 


For any two sets, prove that: 

\[A \cup \left( A \cap B \right) = A\] 

 


Find sets AB and C such that \[A \cap B, A \cap C \text{ and } B \cap C\]are non-empty sets and\[A \cap B \cap C = \phi\]


If A and B are sets, then prove that  \[A - B, A \cap B \text{ and } B - A\] are pair wise disjoint. 


For any two sets of A and B, prove that: 

\[A' \cup B = U \Rightarrow A \subset B\] 


Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)


For any two sets A and B, prove that : 

\[A' - B' = B - A\] 


For any two sets A and B, prove the following: 

\[A \cap \left( A' \cup B \right) = A \cap B\] 


For any two sets A and B, prove the following:

\[A - B = A \Delta\left( A \cap B \right)\]


In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: how many can speak Hindi only


In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: 

how many can speak English only. 


In a survey it was found that 21 persons liked product P1, 26 liked product P2 and 29 liked product P3. If 14 persons liked products P1 and P2; 12 persons liked product P3 and P1 ; 14 persons liked products P2 and P3 and 8 liked all the three products. Find how many liked product P3 only.


Let A and B be two sets in the same universal set. Then,\[A - B =\]


Let A and B be two sets that \[n \left( A \right) = 16, n \left( B \right) = 14, n \left( A \cup B \right) = 25\] Then, \[n \left( A \cap B \right)\] 


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

B ∪ C


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

B ∪ D


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ B ∪ C


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

B ∪ C ∪ D


If X and Y are subsets of the universal set U, then show that Y ⊂ X ∪ Y


If X and Y are subsets of the universal set U, then show that X ∩ Y ⊂ X


If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X


A, B and C are subsets of Universal Set U. If A = {2, 4, 6, 8, 12, 20} B = {3, 6, 9, 12, 15}, C = {5, 10, 15, 20} and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.


Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)


In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C


For all sets A and B, A – (A ∩ B) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.