Advertisements
Advertisements
प्रश्न
If `xsqrt(1 + y) + ysqrt(1 + x)` = 0 and x ≠ y, then prove that `"dy"/"dx" = - 1/(x + 1)^2`
उत्तर
Given `xsqrt(1 + y) + ysqrt(1 + x)` = 0
`xsqrt(1 + y) = - ysqrt(1 + x)`
Squaring both sides we get
⇒ x2 (1 + y) = y2 (1 + x)
⇒ x2 + x2y = y2 + y2x
⇒ x2 – y2 + x2y – y2x = 0
⇒ (x + y) (x – y) + xy(x – y) = 0
⇒ (x – y) [(x + y) + xy] = 0
∴ x – y = 0 (or) x + y + xy = 0
x = y (or) x + y + xy = 0
Given that x ≠ y
x + y + xy = 0
⇒ y + xy = -x
⇒ y(1 + x) = -x
y = `(- x)/(1 + x) = - (x/(1 + x))`
`"dy"/"dx" = - [((1 + x)1 - x(1 + 0))/(1 + x)^2]`
`= - [(1 + x - x)/(1 + x)^2]`
`= - [1/(1 + x)^2]`
`= - 1/(1 + x)^2`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
`sqrtx + 1/root(3)(x) + e^x`
Differentiate the following with respect to x.
x4 – 3 sin x + cos x
Differentiate the following with respect to x.
`e^x/(1 + e^x)`
Find `"dy"/"dx"` for the following function.
x3 + y3 + 3axy = 1
Differentiate the following with respect to x.
(sin x)tan x
Differentiate the following with respect to x.
`sqrt(((x - 1)(x - 2))/((x - 3)(x^2 + x + 1)))`
Find `"dy"/"dx"` of the following function:
x = log t, y = sin t
Find `"dy"/"dx"` of the following function:
x = a(θ – sin θ), y = a(1 – cos θ)
If xy2 = 1, then prove that `2 "dy"/"dx" + y^3`= 0
If y = tan x, then prove that y2 - 2yy1 = 0.