Advertisements
Advertisements
प्रश्न
In a certain positive fraction, the denominator is greater than the numerator by 3. If 1 is subtracted from both the numerator and denominator, the fraction is decreased by `(1)/(14)`. Find the fraction.
उत्तर
Let the numerator of a fraction = x
then denominator = x + 3
then fraction = `(1)/(14)`
Now according to the condition,
new fraction `(x - 1)/(x + 3 1) = (x)/(x + 3) - (1)/(14)`
⇒ `(x - 1)/(x + 2) = (14x - x - 3)/(14(x + 3)`
⇒ `(x - 1)/(x + 2) = (13x - 3)/(14x + 42)`
⇒ (x - 1)(14x + 42) = (13x - 3)(x + 2)
⇒ 14x2 + 42x - 14x - 42 = 13x2 + 26x - 3x 6
⇒ 14x2 + 28x 42 - 13x2 - 23x + 6 = 0
⇒ x2 + 5x - 36 = 0
⇒ x2 + 9x - 4x - 36 = 0
x(x + 9) -4(x + 9) = 0
⇒ (x + 9)(x - 4) = 0
Either x + 9 = 0,
then x = -9,
but it is not possible as the fraction is positive.
or
x - 4 = 0,
then x = 4
∴ Fraction = `(x)/(x + 3) = (4)/(4 + 3) = (4)/(7)`.
APPEARS IN
संबंधित प्रश्न
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects
Solve the following quadratic equations by factorization:
(x − 4) (x + 2) = 0
Solve the following quadratic equations by factorization:
`1/((x-1)(x-2))+1/((x-2)(x-3))+1/((x-3)(x-4))=1/6`
Solve the following quadratic equations by factorization:
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3`, x ≠ 2, 4
Sum of the areas of two squares is 640 m2. If the difference of their perimeters is 64 m. Find the sides of the two squares.
If the list price of a toy is reduced by Rs. 2, a person can buy 2 toys more for Rs. 360. Find the original price of the toy.
Solve the following equation: 4x2 - 13x - 12 = 0
A two digit number is such that the product of the digit is 12. When 36 is added to the number, the digits interchange their places. Find the numbers.
The hypotenuse of grassy land in the shape of a right triangle is 1 metre more than twice the shortest side. If the third side is 7 metres more than the shortest side, find the sides of the grassy land.
If twice the area of a smaller square is subtracted from the area of a larger square, the result is 14 cm2. However, if twice the area of the larger square is added to three times the area of the smaller square, the result is 203 cm2. Determine the sides of the two squares.