मराठी

In a G.P., the ratio between the sum of first three terms and that of the first six terms is 125 : 152. Find its common ratio. - Mathematics

Advertisements
Advertisements

प्रश्न

In a G.P., the ratio between the sum of first three terms and that of the first six terms is 125 : 152. Find its common ratio.

बेरीज

उत्तर

Let a be the first term and r be the common ratio of given G.P.

Now, sum of first three terms = S3 = `(a(r^3 - 1))/(r - 1)`

Now, sum of first six terms = S6 = `(a(r^6 - 1))/(r - 1)`

It is given that

`((a(r^3 - 1))/(r - 1))/((a(r^6 - 1))/(r - 1)) = 125/152`

`=> (r^3 - 1)/(r^6 - 1) = 125/152`

`=> (r^3 - 1)/((r^3)^2 - (1)^2) = 125/152`

`=> (r^3 - 1)/((r^3 - 1)(r^3 + 1)) = 125/152`

`=> 1/(r^3 + 1) = 125/152`

`=> r^3 + 1 = 152/125`

`=> r^3 = 152/125 - 1`

= `(152 - 125)/125`

= `27/125`

`=> r = 3/5`

Hence, the common ratio is `3/5`.

shaalaa.com
Geometric Progression - Finding Sum of Their First ‘N’ Terms
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Geometric Progression - Exercise 11 (D) [पृष्ठ १६१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 11 Geometric Progression
Exercise 11 (D) | Q 9 | पृष्ठ १६१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×