Advertisements
Advertisements
प्रश्न
In ΔABC, altitudes AD and BE are drawn. If AD = 7 cm, BE = 9 cm and EC = 12 cm then, find the length of CD.
बेरीज
उत्तर
Given, AD = 7 cm, BE = 9 cm, EC = 12 cm then, CD = ?
Let CD = x cm
In ΔBEC, ∠BEC = 90° ...(As BE ⊥ AC given)
⇒ from Pythagoras theorem,
`BC = sqrt(BE^2 + EC^2)`
= `sqrt(9^2 + 12^2)` cm
= `sqrt(81 + 144)` cm
= `sqrt225` cm
BC = 15 cm
⇒ BD = (15 − x) cm
Now Area ΔABC = `1/2 xx BC xx AD`
= `1/2 xx AC xx BE`
{As area of ΔABC = `1/2` base × height}
⇒ `1/2 xx 15 xx 7 = 1/2 AC xx 9`
⇒ AC = `(15 xx 7)/9 = 35/3` cm
Now, ln ΔADC,
∠ADC = 90°
So, Again from Pythagoras theorem,
DC2 = AC2 − AD2
DC = `sqrt((35/3)^2 - 7^2)` cm
= `7 * sqrt(5^2/3^2 - 1^2)` cm
= `7 * sqrt((25 - 9)/9)` cm
= `7 * 4/3` cm
= `28/3` cm
⇒ DC = `28/3` cm
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?