Advertisements
Advertisements
प्रश्न
In Δ ABC, prove that a3 sin(B – C) + b3sin(C – A) + c3sin(A – B) = 0
उत्तर
By the sine rule,
`a/"sinA" = b/"sinB" = c/"sinC"` = k
∴ a = k sinA, b = k sinB, c = k sinC
L.H.S. = a3sin(B − C) + b3sin(C − A) + c3sin(A − B)
= a3(sinB cosC − cosB sinC) + b3(sinC cosA − cosC sinA) + c3(sinA cosB − cosA sinB)
`= a^3(b/kcos"C" − c/k cos"B") + b^3(c/kcos"A" − a/kcos"C") + c^3(a/kcos"B" − b/kcos"A")`
`= (1)/k[a^3bcos"C" − a^3"c"cos"B" + b^3"c"cos"A" − b^3"a"cos"C" + c^3"a"cos"B" - c^3"b"cos"A"]`
`= (1)/k[a^3b((a^2 + b^2 - c^2)/(2ab)) - a^3"c"((c^2 + a^2 - b^2)/(2ca)) + b^3"c"((b^2 + c^2 - a^2)/(2bc)) - ab^3((a^2 + b^2 - c^2)/(2ab)) + ac^3((c^2 + a^2 - b^2)/(2ca)) - bc^3((b^2 + c^2 - a^2)/(2bc))]` ...[By cosine rule]
`= (1)/(2k)[a^2(a^2 + b^2 - c^2) - a^2(a^2 + c^2 - b^2) + b^2(b^2 + c^2 - a^2) - b^2(a^2 + b^2 - c^2) + c^2(c^2 + a^2 - b^2) - c^2(b^2 + c^2 - a^2)]`
`= (1)/(2k)[a^4 + a^2b^2 - a^2c^2 - a^4 - a^2c^2 + a^2b^2 + b^4 + b^2c^2 - a^2b^2 - a^2b^2 - b^4 + b^2c^2 + c^4 + a^2c^2 - b^2c^2 - b^2c^2 - c^4 + a^2c^2]`
`= (1)/(2k)(0)`
= 0
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the principal solution of the following equation:
tan θ = – 1
Find the general solution of the following equation:
cosec θ = - √2.
Find the general solution of the following equation:
sin 2θ = `1/2`
Find the general solution of the following equation:
tan `(2θ)/(3) = sqrt3`.
Find the general solution of the following equation:
4sin2θ = 1.
Find the general solution of the following equation:
cos 4θ = cos 2θ
Find the general solution of the following equation:
tan3θ = 3 tanθ.
Find the general solution of the following equation:
cosθ + sinθ = 1.
In ΔABC, prove that `sin(("B" − "C")/2) = (("b" − "c")/"a")cos "A"/(2)`.
In ΔABC, if a cos A = b cos B then prove that the triangle is either a right angled or an isosceles traingle.
Select the correct option from the given alternatives:
The general solution of sec x = `sqrt(2)` is ______.
Select the correct option from the given alternatives:
If polar coordinates of a point are `(2, pi/4)`, then its cartesian coordinates are
If `sqrt3`cos x - sin x = 1, then general value of x is ______.
If in a triangle, the angles are in A.P. and b: c = `sqrt3: sqrt2`, then A is equal to
`"cos"^-1 ("cos" (7pi)/6)` = _________.
Select the correct option from the given alternatives:
The value of cot (tan-12x + cot-12x) is
Select the correct option from the given alternatives:
The principal value branch of sec-1x is
`"cos"["tan"^-1 1/3 + "tan"^-1 1/2]` = ______
State whether the following equation has a solution or not?
3 sin θ = 5
Show that `cos^-1 sqrt3/2 + 2 sin^-1 sqrt3/2 = (5pi)/6`.
If | x | < 1, then prove that
`2 tan^-1 "x" = tan^-1 ("2x"/(1 - "x"^2)) = sin^-1 ("2x"/(1 + "x"^2)) = cos^-1 ((1 - "x"^2)/(1 + "x"^2))`
If x, y, z are positive, then prove that
`tan^-1 (("x - y")/(1 + "xy")) + tan^-1 (("y - z")/(1 + "yz")) + tan^-1 (("z - x")/(1 + "zx")) = 0`
If cos-1 x + cos-1y + cos-1z = 3π, then show that x2 + y2 + z2 + 2xyz = 1.
Find the principal solutions of tan x = `-sqrt(3)`
The general solution of sec θ = `sqrt2` is
If tan-1 x + 2cot-1 x = `(5pi)/6`, then x is
If 2 cos2 θ + 3 cos θ = 2, then permissible value of cos θ is ________.
The number of solutions of `sin^2 theta = 1/2` in [0, π] is ______.
The measure of the angle between lines (sin2θ - 1)x2 - 2xy cos2θ + cos2θy2 = 0 is ______
The general solution of cot θ + tan θ = 2 is ______.
If `(tan 3 theta - 1)/(tan 3 theta + 1) = sqrt3`, then the general value of θ is ______.
The general solution of cosec x = `-sqrt2` is ______
The equation 3sin2x + 10 cos x – 6 = 0 is satisfied, if ______.
The general solution of x(1 + y2)1/2 dx + y(1 + x2)1/2 dy = 0 is ______.
The general solution of the equation tan θ + tan 4θ + tan 7θ = tan θ tan 4θ tan 7θ is ______.
Prove that the general solution of cos θ = cos α is θ = 2nπ ± α, n ∈ Z.
The general solution to cos100x – sin100x = 1 is ______.
If tan θ + sec θ = `sqrt(3)`, find the general value of θ.