मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

In ΔABC, prove that sin(B−C2)=(b−ca)cos A2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In ΔABC, prove that `sin(("B" − "C")/2) = (("b" − "c")/"a")cos  "A"/(2)`.

बेरीज

उत्तर

By the sine rule,

`"a"/"sin A" = "b"/"sin B" = "c"/"sin C"` = k

∴ a = k sin A, b = k sin B, c = k sin C

RHS = `(("b" − "c")/"a")cos  "A"/(2)`

RHS = `(("k sin B" − "k sin C")/("k sin A"))cos  "A"/(2)`

RHS = `(("sin B" − "sin C")/("sin A"))cos  "A"/(2)`

RHS = `(2cos(("B" +  "C")/2).sin(("B" − "C")/2))/(2sin  "A"/(2) . cos  "A"/(2)).cos  "A"/(2)`

RHS = `(cos(("B" + "C")/(2)).sin(("B" − "C")/(2)))/(sin  "A"/(2)`

RHS = `(cos(π/2 − "A"/2).sin(("B" − "C")/(2)))/(sin  "A"/(2))`  ...[ ∵ A + B + C = π ]

RHS = `(sin  "A"/(2). sin(("B" − "C")/(2)))/(sin  "A"/(2)`

RHS = `sin(("B" − "C")/(2))`

LHS = `sin(("B" − "C")/(2))`

RHS = LHS

`sin(("B" − "C")/2) = (("b" − "c")/"a")cos  "A"/(2)`

Hence proved.

shaalaa.com
Trigonometric Equations and Their Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise 3.2 [पृष्ठ ८८]

APPEARS IN

संबंधित प्रश्‍न

Find the principal solution of the following equation :

cot θ = `sqrt(3)`


Find the principal solution of the following equation:

sin θ = `-1/2`


Find the principal solution of the following equation:

`sqrt(3)` cosecθ + 2 = 0 


Find the general solution of the following equation:

tan θ = `(1)/(sqrt(3))`


Find the general solution of the following equation:

sin 2θ = `1/2`


Find the general solution of the following equation:

cot 4θ = – 1


Find the general solution of the following equation:

4cos2θ  = 3.


Find the general solution of the following equation:

4sin2θ = 1.


Find the general solution of the following equation:

cos 4θ = cos 2θ


State whether the following equation has a solution or not?

cos2θ = – 1.


State whether the following equation has a solution or not?

2sinθ = 3


With usual notations prove that 2(bc cosA + ac cosB + ab cosC) = a2 + b2 + c.


Select the correct option from the given alternatives:

The principal solutions of equation sin θ = `- 1/2` are ______.


Select the correct option from the given alternatives:

If polar coordinates of a point are `(2, pi/4)`, then its cartesian coordinates are


The principal value of sin1 `(- sqrt3/2)` is ______.


Select the correct option from the given alternatives:

If tan-1(2x) + tan-1(3x) = `pi/4`, then x = _____


Select the correct option from the given alternatives:

`2 "tan"^-1 (1/3) + "tan"^-1 (1/7) =` _____


In Δ ABC, prove that `cos(("A" - "B")/2) = (("a" + "b")/"c")sin  "C"/2` .


State whether the following equation has a solution or not?

3 sin θ = 5


Show that `cot^-1  1/3 - tan^-1  1/3 = cot^-1  3/4`.


Show that `2 cot^(-1)  3/2 +  sec^(-1)  13/12 = π/2`


If x, y, z are positive, then prove that

`tan^-1 (("x - y")/(1 + "xy")) + tan^-1 (("y - z")/(1 + "yz")) + tan^-1 (("z - x")/(1 + "zx")) = 0`


If cos-1 x + cos-1y + cos-1z = 3π, then show that x2 + y2 + z2 + 2xyz = 1.


The principal solutions of `sqrt(3)` sec x − 2 = 0 are ______


The value of tan 57°- tan 12°- tan 57° tan 12° is ______.


`[sin (tan^-1  3/4)]^2 + [sin(tan^-1  4/3)]^2 = ?`


If x + y = `pi/2`, then the maximum value of sin x. sin y is.


The number of solutions of `sin^2 theta = 1/2` in [0, π] is ______.


The measure of the angle between lines (sin2θ - 1)x2 - 2xy cos2θ + cos2θy2 = 0 is ______ 


The general solution of sin 2x = cos 2x is ______ 


The general solution of the equation tan θ tan 2θ = 1 is given by ______ 


Find the principal solutions of cot θ = 0


If 2 tan–1(cos x) = tan–1(2 cosec x). then find the value of x.


Principal solutions at the equation sin 2x + cos 2x = 0, where π < x < 2 π are ______.


Find the general solution of sin θ + sin 3θ + sin 5θ = 0


The general solution to cos100x – sin100x = 1 is ______.


The general solution of cot 4x = –1 is ______.


If `sin^-1  4/5 + cos^-1  12/13` = sin–1α, then find the value of α.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×