मराठी

In the Following, Determine Whether the Given Values Are Solutions of the Given Equation Or Not: `X^2 - 3sqrt3x+6=0`, `X=Sqrt3`, `X=-2sqrt3` - Mathematics

Advertisements
Advertisements

प्रश्न

In the following, determine whether the given values are solutions of the given equation or not:

`x^2 - 3sqrt3x+6=0`, `x=sqrt3`, `x=-2sqrt3`

उत्तर

We have been given that,

`x^2 - 3sqrt3x+6=0`, `x=sqrt3`, `x=-2sqrt3`

Now if `x=sqrt3` is a solution of the equation then it should satisfy the equation.

So, substituting `x=sqrt3` in the equation, we get

`x^2 - 3sqrt3x+6`

`=(sqrt3)^2-3sqrt3(sqrt3)+6`

= 3 - 9 + 6

= 0

Hence `x=sqrt3` is a solution of the quadratic equation.

Also, if `x=-2sqrt3` is a solution of the equation then it should satisfy the equation

So, substituting `x=-2sqrt3` in the equation, we get

`x^2 - 3sqrt3x+6`

`=(-2sqrt3)^2-3sqrt3(-2sqrt3)+6`

= 12 - 18 + 6

= 0

Hence `x=-2sqrt3` is a solution of the quadratic equation.

Therefore, from the above results we find out that `x=sqrt3` and `x=-2sqrt3` are the solutions of the given quadratic equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Quadratic Equations - Exercise 4.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 4 Quadratic Equations
Exercise 4.1 | Q 2.3 | पृष्ठ ४

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×