मराठी

In given figure, two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that ∠PTQ = 2∠OPQ. - Mathematics

Advertisements
Advertisements

प्रश्न

In given figure, two tangents PT and QT are drawn to a circle with centre O from an external point T. Prove that `angle`PTQ = 2`angle`OPQ.

बेरीज

उत्तर

Given that,

TP and TQ are tangents to circle

To prove: `angle`PTQ = 2`angle`OPQ

We have,

TP = TQ    ...[Lengths of tangents from an external point to a circle are equal]

`angle`TQP = `angle`TPQ    ...(i) [angles of equal sides are equal]

Also, `angle`OPT = 90°    ...[Radius is perpendicular to tangent at point of contact]

⇒ `angle`OPQ + `angle`QPT = 90°

⇒ `angle`TPQ = 90° − `angle`OPQ    ...(ii)

In `triangle`PTQ, we have,

`angle`PTQ + `angle`TQP + `angle`TPQ = 180°   ...[Sum of angles of triangle]

From (i) and (ii),

⇒ `angle`PTQ + `angle`TPQ + `angle`TPQ = 180°

⇒ `angle`PTQ + 2( 90° − `angle`OPQ) = 180°

⇒ `angle`PTQ + 180° − 2`angle`OPQ = 180°

⇒ `angle`PTQ =  2`angle`OPQ

Hence, proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Basic - Delhi Set 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×