मराठी

In two concentric circles, the radii are OA = r cm and OQ = 6 cm, as shown in the figure. Chord CD of larger circle is a tangent to smaller circle at Q. PA is tangent to larger circle. - Mathematics

Advertisements
Advertisements

प्रश्न

In two concentric circles, the radii are OA = r cm and OQ = 6 cm, as shown in the figure. Chord CD of larger circle is a tangent to smaller circle at Q. PA is tangent to larger circle. If PA = 16 cm and OP = 20 cm, the length CD.

बेरीज

उत्तर

Given that,

OA = r cm, OQ = 6 cm,

PA = 16 cm, OP = 20 cm

In `triangle`AOP,

We have, `angle`OAP = 90°  ...[Radius is perpendicular to tangent at point of contact]

So, OP2 = OA2 + AP2

⇒ (20)2 = r2 + (16)2 

⇒ r2 = 400 − 256 

⇒ r2 = 144

⇒ r = 12cm

Also, OA = OD = 12 cm    ...[Radius of circle]

In `triangle`QOD,

We have, `angle`OQD = 90°    ...[Radius is perpendicular to tangent at point of contact]

So, OD2 = OQ2 + QD2

⇒ (12)2 = (6)2 + (QD)2

⇒ QD2 = 144 − 36 

⇒ QD2 = 108

⇒ QD = `6sqrt3` cm

Also, CD = 2QD  ...[As chord is bisected at the point of contact of circle]

So, CD = `2 × 6sqrt3`

= `12sqrt3` cm

Hence, the length of CD is `12sqrt3` cm.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Basic - Delhi Set 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×