Advertisements
Advertisements
प्रश्न
In the given figure, AB, BC, CD and DA are tangents to the circle with centre O forming a quadrilateral ABCD.
Show that ∠AOB + ∠COD = 180°
बेरीज
उत्तर
Given A quad. ABCD circumscribes a circle with centre O.
To Prove:
∠AOB + ∠COD = 180°
and ∠AOD + ∠BOC = 180°
Join OP, OQ, OR and OS.
Tangents formed from a circle's peripheral points form equal angles at its centre.
∴ ∠1 = ∠2, ∠3 = ∠4, ∠5 = ∠6, ∠7 = ∠8,
And ∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 + ∠8 = 360° ...[∠s at a Point]
⇒ 2 (∠2 + ∠3) + 2 (∠6 + ∠7) = 360°
2 (∠1 + ∠8) + 2 (∠4 + ∠5) = 360°
⇒ ∠2 + ∠3 + ∠6 + ∠7 = 180°
∠1 + ∠8 + ∠4 + ∠5 = 180°
⇒ ∠AOB + ∠COD = 180°
∠AOD + ∠BOC = 180°
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?