Advertisements
Advertisements
प्रश्न
Integrate the following functions with respect to x :
`x^3/((x - 1)(x - 2))`
उत्तर
`int x^3/((x - 1)(x - 2)) "d"x = int ((x^3 - 1) + 1)/((x - 1)(x - 2)) "d"x`
= `int ((x^3 - 1)/((x - 1)(x - 2)) + 1/((x - 1)(x - 2))) "d"x`
= `int (x^3 - 1)/((x - 1)(x - 2)) "d"x + int ("d"x)/((x - 1)(x - 2))`
= `int ((x - 1)(x^2 + x + 1))/((x - 1)(x - 2)) "d"x + int ("d"x)/((x - 1)(x - 2))`
= `int ((x^2 + x + 1))/(x - 2) "d"x + int ("d"x)/((x - 1)(x - 2))` ........(1)
Consider `int (x^2 + x + 1)/(x - 2) "d"x`.
As the degree of the N.R is greater than the degree of the D.R divide the N.R by D.R till the degree of the N.R less than the degree of the D.R.
`(x^2 + x + 1)/(x - 2) = x + 3 + 7/(x - 2)`
`int (x^2 + x + 1)/(x - 2) * "d"x = int [(x + 3) + 7/(x - 2)] "d"x`
= `int (x + 3) "d"x + int 7/(x - 2) "d"x`
= `int x "d"x + 3 int "d"x + 7 int ("d"x)/(x - 2)`
`int (x^2 + x + 1)/(x - 2) * "d"x = x^2/2 + 3x + 7 log |x - 2|` ........(2)
Consider `int ("d"x)/((x - 1)(x - 2))`
`1/((x - 1)(x - 2)) = "A"/(x - 1) + "B"/(x + 2)`
1 = A(x – 2) + B(x – 1)
Put x =
1 = A(2 – 2) + B(2 – 1)
1 = A × 0 + B × 1
B = 1
Put x = 1
1 = A(1 – 2) + B(1 – 1)
1 = A × – 1 + B × 0
A = – 1
`1/((x - 1)(x - 2)) = - 1/(x - 1) + 1/(x - 2)`
`int ("d"x)/((x - 1)(x - 2)) = int (- 1/(x - 1) + 1/(x - 2)) "d"x`
= `int - ("d"x)/(x - 1) + int ("d"x)/(x - 2)`
= `- log |x - 1| + log |x - 2| + "c"` ........(3)
Using equations (2) and (3), equation (1) becomes
`int x^3/((x - 1)(x - 2)) "d"x = x^2/2 + 3x + 7 log |x - 2| - log |x - 1| + log |x - 2| + "c"`
= `x^2/2 + 3x + 8 log |x - 2| - log |x - 1 + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫_0^(pi/2) (sinx.cosx)/(1 + sin^4x)`.dx
Integrate the following functions with respect to x :
(2x – 5)(3x + 4x)
Integrate the following functions with respect to x :
cot2x + tan2x
Integrate the following functions with respect to x :
`(cos 2x)/(sin^2x cos^2x)`
Integrate the following functions with respect to x :
`1/((x - 1)(x + 2)^2`
Integrate the following with respect to x:
x sin 3x
Integrate the following with respect to x:
`tan^-1 ((8x)/(1 - 16x^2))`
Integrate the following with respect to x:
`"e"^("a"x) cos"b"x`
Integrate the following with respect to x:
`"e"^(- 3x) cos x`
Integrate the following with respect to x:
`"e"^x ((x - 1)/(2x^2))`
Find the integrals of the following:
`1/sqrt(x^2 - 4x + 5)`
Integrate the following with respect to x:
`(2x + 3)/sqrt(x^2 + 4x + 1)`
Integrate the following functions with respect to x:
`sqrt(81 + (2x + 1)^2`
Choose the correct alternative:
`int sqrt(tanx)/(sin2x) "d"x` is
Choose the correct alternative:
`int secx/sqrt(cos2x) "d"x` is
Choose the correct alternative:
`int tan^-1 sqrt((1 - cos 2x)/(1 + cos 2x)) "d"x` is
Choose the correct alternative:
`int sqrt((1 - x)/(1 + x)) "d"x` is
Choose the correct alternative:
`int ("d"x)/("e"^x - 1)` is