Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x:
25xe–5x
उत्तर
`int 5x"e"^(-5x) "d"x = int 5x"e"^(- 5x) "d"x`
`int "u" "dv" = "uv" - "u""'""v"_2 + "u""'""v"_2 - "u""'""v"_3 +` .........(1)
u = x
u' = 1
u" = 0
dv = `"e"^(- 5x) * "d"x`
⇒ v = `int "e"^(- 5x) * d"x`
= `("e"^(- 5x))/(- 5)`
v1 = `int "v" "d"x`
= `- 1/5 int "e"^(-5x) * "d"x`
= `- 1/5 xx ("e"^(- 5x))/(- 5)`
= `+ 1/5^2 "e"^(-5x)`
v2 = `int "v"_1 "d"x`
= `int 1/5^2 "e"^(- 5x) "d"x`
= `1/5^2 xx ("e"^-5x)/(- 5)`
= `- 1/5^3 "e"^(- 5x)`
`int 25x "e"^(- 5x) "d"x = 25[x xx ("e"^(- 5x))/(5x) - 1 xx 1/5^2 "e"^(- 5x) + 0 xx - 1/5^3 "e"^(-5x)]`
= `25[ - x/5 "e"^(- 5x) - 1/5^2 "e"(- 5x)]`
= `- 5x "e"^(-5 x) - "e"^(- 5x)`
`int 25x "e"^(- 5x) "d"x = - "e"^( 5x) (5x + 1 + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (1+logx)/(x(2+logx)(3+logx))dx`
Integrate the following functions with respect to x :
`[sqrt(x) + 1/sqrt(x)]^2`
Integrate the following functions with respect to x :
`(1 + cos 4x)/(cos x - tan x)`
Integrate the following functions with respect to x :
`"e"^(x log "a") "e"^x`
Integrate the following functions with respect to x :
`(8^(1 + x) + 4^(1 - x))/2^x`
Integrate the following functions with respect to x :
`1/((x - 1)(x + 2)^2`
Integrate the following with respect to x :
`(10x^9 + 10^x log_"e" 10)/(10^x + x^10)`
Integrate the following with respect to x :
`cot x/(log(sin x))`
Integrate the following with respect to x :
`sqrt(x)/(1 + sqrt(x))`
Integrate the following with respect to x :
`alpha beta x^(alpha - 1) "e"^(- beta x^alpha)`
Integrate the following with respect to x :
`tan x sqrt(sec x)`
Integrate the following with respect to x:
x3 sin x
Integrate the following with respect to x:
`"e"^("a"x) cos"b"x`
Find the integrals of the following:
`1/(4 - x^2)`
Find the integrals of the following:
`1/(6x - 7 - x^2)`
Integrate the following with respect to x:
`(2x - 3)/(x^2 + 4x - 12)`
Integrate the following with respect to x:
`(2x + 3)/sqrt(x^2 + 4x + 1)`
Choose the correct alternative:
The gradient (slope) of a curve at any point (x, y) is `(x^2 - 4)/x^2`. If the curve passes through the point (2, 7), then the equation of the curve is
Choose the correct alternative:
`int (sec^2x)/(tan^2 x - 1) "d"x`
Choose the correct alternative:
`int sin sqrt(x) "d"x` is