Advertisements
Advertisements
प्रश्न
Integrate the following functions with respect to x :
`(8^(1 + x) + 4^(1 - x))/2^x`
उत्तर
`int ((8^(1 + x) + 4^(1 - x))/2^x) "d"x`
= `int ((8^(1 + x))/2^x + (4^(1- x))/2^x) "d"x`
= `int ((8^1 * 8^x)/2^x + (4^1 * 4^-x)/2^2x) "d"x`
= `int (8* 8^x)/2^x "d"x + int (4* 4^-x)/2^x * "d"x`
= `8 int (2^3)^x/2^x "d"x + 4int (2^2)^x/2^x * "d"x`
= `8int 2^(3x)/2^x "d"x + 4int 2^(-2x)/2^x * "d"x`
= `8int 2^(3x) 2^(- x) * "d"x + 4int 2^(- 2x) 2^(- x) * "d"x`
= `8int 2^(3x - x) * "d"x + 4int 2^(- 2x - x) * "d"x`
= `8int 2^(2x) * "d"x + 4int 2^(- 3x) * "d"x`
= `8 xx 1/2 xx 2^(2x)/log 2 + 4 xx 1/(-3) xx 2^(- 3x)/log2 + "c"`
= `4 xx 2^(2x)/log2 - 4/3 xx 2^(- 3x)/log2 + "c"`
= `(2^(2x) xx 2^(2x))/log2 - (2^2 xx 2^(- 3x))/(3 log 2) + "c"`
= `2^(2x + 2)/log2 - 2^(2 - 3x)/(3log2) + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int _0^1 ("x" . ("sin"^-1 "x")^2)/sqrt (1 - "x"^2)` dx
Integrate the following functions with respect to x :
sin2 5x
Integrate the following functions with respect to x :
`1/((x - 1)(x + 2)^2`
Integrate the following with respect to x :
`("e"^x - "e"^-x)/("e"^x + "e"^-x)`
Integrate the following with respect to x :
x(1 – x)17
Integrate the following with respect to x:
`"e"^(- 3x) cos x`
Integrate the following with respect to x:
`"e"^x (tan x + log sec x)`
Integrate the following with respect to x:
`"e"^x sec x(1 + tan x)`
Integrate the following with respect to x:\
`logx/(1 + log)^2`
Find the integrals of the following:
`1/(9x^2 - 4)`
Find the integrals of the following:
`1/(6x - 7 - x^2)`
Find the integrals of the following:
`1/((x + 1)^2 - 25)`
Find the integrals of the following:
`1/sqrt(xx^2 + 4x + 2)`
Integrate the following functions with respect to x:
`sqrt(x^2 - 2x - 3)`
Integrate the following functions with respect to x:
`sqrt(9 - (2x + 5)^2`
Integrate the following functions with respect to x:
`sqrt(81 + (2x + 1)^2`
Choose the correct alternative:
If `int 3^(1/x)/x^2 "d"x = "k"(3^(1/x)) + "c"`, then the value of k is
Choose the correct alternative:
`int ("e"^(6 log x) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x` is
Choose the correct alternative:
`int ("d"x)/("e"^x - 1)` is
Choose the correct alternative:
`int "e"^(- 4x) cos "d"x` is