Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`"e"^(xlog"a") + "e"^("a"log"a") - "e"^("n"logx)`
उत्तर
`("e"^(xlog"a") + "e"^("a"log"a") - "e"^("n"logx)) "d"x`
- `int ("e"^(log "a"^x) + "e"^(log "a"^"a") - "e"^("a" log x^"n")) "d"x`
= `int ("a"^1 + "a"^"a" - x^"n") "d"x`
= `["a"^x/(log|"a"|) + "a"^"a" (x) - (x^("n" + 1))/(("n" + 1))] + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`[1 - 1/2]"e"^((x + 1/x))`
Integrate the following with respect to x.
`(cos 2x + 2sin^2x)/(cos^2x)`
Integrate the following with respect to x.
`"e"^x [1/x^2 - 2/x^3]`
Integrate the following with respect to x.
`"e"^(3x) [(3x - 1)/(9x^2)]`
Integrate the following with respect to x.
`1/(x^2 - x - 2)`
Integrate the following with respect to x.
`1/sqrt(x^2 + 6x + 13)`
Choose the correct alternative:
`int 2^x "d"x` is
Choose the correct alternative:
`int "e"^x/("e"^x + 1) "d"x` is
Choose the correct alternative:
`int_0^4 (sqrt(x) + 1/sqrt(x)) "d"x` is
Evaluate the following integral:
`int ("d"x)/(2 - 3x - 2x^2)`