рдорд░рд╛рдареА

Investigate for what values of ЁЭЭБ ЁЭТВЁЭТПЁЭТЕ ЁЭЭА the equation x+y+z=6; x+2y+3z=10; x+2y+ЁЭЬЖz=ЁЭЭБ have (i)no solution, (ii) a unique solution, (iii) infinite no. of solution. - Applied Mathematics 1

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Investigate for what values of ЁЭЭБ ЁЭТВЁЭТПЁЭТЕ ЁЭЭА the equation x+y+z=6; x+2y+3z=10; x+2y+ЁЭЬЖz=ЁЭЭБ have
(i)no solution,
(ii) a unique solution,
(iii) infinite no. of solution.

рдмреЗрд░реАрдЬ

рдЙрддреНрддрд░

Given eqn : x+y+z=6, x+2y+3z=10,  x+2y+ЁЭЬЖz=ЁЭЭБ

A X = B

`[(1,1,1),(1,2,3),(1,2,lambda)][(x),(y),(z)]=[(6),(10),(mu)]`

Argumented matrix is :`[(1,1,1),(1,2,3),(1,2,lambda)][(6),(10),(mu)]`

`R_1-R_2,`

`->[(1,1,1,|,6),(0,1,2 ,|,4 ),(0,1,lambda-3,|,mu-6)]`

`R_2-R_1,`

`-> [(1,1,1,|,6),(0,1,2 ,|,4 ),(0,1,lambda-1,|,mu-10)]`

(i) When ЁЭЬЖ=3, ЁЭЭБ≠ЁЭЯПЁЭЯО ЁЭТХЁЭТЙЁЭТЖЁЭТП ЁЭТУ(ЁЭТВ)=ЁЭЯР,ЁЭТУ(ЁЭСитЛоЁЭСй)=ЁЭЯС
r(A)≠ЁЭТУ(ЁЭСитЛоЁЭСй)
Hence for ЁЭЬЖ=3 , ЁЭЭБ≠ЁЭЯПЁЭЯО system is inconsistent.
No solution exist.
(ii) When ЁЭЬЖ≠3,ЁЭЭБ≠ЁЭЯПЁЭЯО ,ЁЭТУ(ЁЭСи)=ЁЭТУ(ЁЭСитЛоЁЭСй)=ЁЭЯС
Unique solution exist.
(iii) When ЁЭЬЖ=3,ЁЭЭБ=ЁЭЯПЁЭЯО ЁЭТУ(ЁЭСи)=ЁЭТУ(ЁЭСитЛоЁЭСй)=ЁЭЯР<ЁЭЯС
Infinite solution.

shaalaa.com
consistency and solutions of homogeneous and non тАУ homogeneous equations
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
2017-2018 (June) CBCGS
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Course
Use app×