Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Investigate for what values of ЁЭЭБ ЁЭТВЁЭТПЁЭТЕ ЁЭЭА the equation x+y+z=6; x+2y+3z=10; x+2y+ЁЭЬЖz=ЁЭЭБ have
(i)no solution,
(ii) a unique solution,
(iii) infinite no. of solution.
рдЙрддреНрддрд░
Given eqn : x+y+z=6, x+2y+3z=10, x+2y+ЁЭЬЖz=ЁЭЭБ
A X = B
`[(1,1,1),(1,2,3),(1,2,lambda)][(x),(y),(z)]=[(6),(10),(mu)]`
Argumented matrix is :`[(1,1,1),(1,2,3),(1,2,lambda)][(6),(10),(mu)]`
`R_1-R_2,`
`->[(1,1,1,|,6),(0,1,2 ,|,4 ),(0,1,lambda-3,|,mu-6)]`
`R_2-R_1,`
`-> [(1,1,1,|,6),(0,1,2 ,|,4 ),(0,1,lambda-1,|,mu-10)]`
(i) When ЁЭЬЖ=3, ЁЭЭБ≠ЁЭЯПЁЭЯО ЁЭТХЁЭТЙЁЭТЖЁЭТП ЁЭТУ(ЁЭТВ)=ЁЭЯР,ЁЭТУ(ЁЭСитЛоЁЭСй)=ЁЭЯС
r(A)≠ЁЭТУ(ЁЭСитЛоЁЭСй)
Hence for ЁЭЬЖ=3 , ЁЭЭБ≠ЁЭЯПЁЭЯО system is inconsistent.
No solution exist.
(ii) When ЁЭЬЖ≠3,ЁЭЭБ≠ЁЭЯПЁЭЯО ,ЁЭТУ(ЁЭСи)=ЁЭТУ(ЁЭСитЛоЁЭСй)=ЁЭЯС
Unique solution exist.
(iii) When ЁЭЬЖ=3,ЁЭЭБ=ЁЭЯПЁЭЯО ЁЭТУ(ЁЭСи)=ЁЭТУ(ЁЭСитЛоЁЭСй)=ЁЭЯР<ЁЭЯС
Infinite solution.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Investigate for what values of μ and λ the equations x+y+z=6, x+2y+3z=10, x+2y+λz=μ has
1) No solution
2) A unique solution
3) Infinite number of solutions.