Advertisements
Advertisements
Question
Investigate for what values of ๐ ๐๐๐
๐ the equation x+y+z=6; x+2y+3z=10; x+2y+๐z=๐ have
(i)no solution,
(ii) a unique solution,
(iii) infinite no. of solution.
Solution
Given eqn : x+y+z=6, x+2y+3z=10, x+2y+๐z=๐
A X = B
`[(1,1,1),(1,2,3),(1,2,lambda)][(x),(y),(z)]=[(6),(10),(mu)]`
Argumented matrix is :`[(1,1,1),(1,2,3),(1,2,lambda)][(6),(10),(mu)]`
`R_1-R_2,`
`->[(1,1,1,|,6),(0,1,2 ,|,4 ),(0,1,lambda-3,|,mu-6)]`
`R_2-R_1,`
`-> [(1,1,1,|,6),(0,1,2 ,|,4 ),(0,1,lambda-1,|,mu-10)]`
(i) When ๐=3, ๐≠๐๐ ๐๐๐๐ ๐(๐)=๐,๐(๐จโฎ๐ฉ)=๐
r(A)≠๐(๐จโฎ๐ฉ)
Hence for ๐=3 , ๐≠๐๐ system is inconsistent.
No solution exist.
(ii) When ๐≠3,๐≠๐๐ ,๐(๐จ)=๐(๐จโฎ๐ฉ)=๐
Unique solution exist.
(iii) When ๐=3,๐=๐๐ ๐(๐จ)=๐(๐จโฎ๐ฉ)=๐<๐
Infinite solution.