Advertisements
Advertisements
Question
Examine the function `f(x,y)=xy(3-x-y)` for extreme values & find maximum and minimum values of `f(x,y).`
Solution
`f(x,y)=xy(3-x-y)=3xy-x^2y-xy^2`
Diff. function w.r.t x and y partially,
`(delf(x,y))/(delx)=3y-2xy-y^2`
`(delf(x,y))/(delx)=0`
`3y-2xy-y^2=0`
`y=0, 3-2x-y=0`
&
`(delf(x,y))/(dely)=3x-x^2-2xy`
`(delf(x,y))/(dely)=0`
`3x=x^2-2xy=0`
`x=0,3-x-2y=0`
Stationary points are : (0,0) ,(3,0) , (0,3) , (1,1)
`r=(del^2f)/(delx^2)=-2y , t=(del^2f)/(dy^2)=-2x`
`s=(del^2f)/(delxdely)=3-2x-2y`
`s^2=(3-2x-2y)^2`
`rt-s^2=4xy-(3-2x-2y)^2`
For point (0,0), `rt-s^2=-9<0`
The point is of maxima.
For point (3,0), `rt-s^2=-9<0`
The point is of maxima .
For (0,3), `rt-s^2=-9<0`
The point is of maxima.
For point (1,1), `rt-s^2=3>0`
The point is of minima.
(a) Maximum values : At (0,0) , (0,3), (3,0)
At point (0,0) f(max)=0
At point (0,3) f(max)=0
At point (3,0) f(max)=0
(b) Minimum values : At (1,1)
At point (1,1) f(min)=1
The maximum and minimum values of function are 0 and 1.