Advertisements
Advertisements
Question
Find the stationary points of the function x3+3xy2-3x2-3y2+4 & also find maximum and minimum values of the function.
Solution
Letf`(x,y)=x^3+3xy^2-3x^2-3y^2+4` …(1)
∴` f_x=3x^2+3y^2-6x-0+0`
∴ `r=f_(x x)=6x-6` …(2)
Also,` f_y=0+6xy-0-6y+0`
∴` t=f_(y y)=6x-6` …(3)
∴` s= f_(x y)=0+6y-0` …(4)
`"Put" f_x=0 and f_y=0`
∴ `3x^2+3y^2-6x=0`
∴` x^2+y^2-2x=0` …(5)
And, `6xy-6y=0`
∴ `6y(x-1)=0`
∴ `y=0 pr x=1`
Case I : When x = 1
From (5), `1^2+y^2-2(1)=0`
∴ `y^2-1=0`
∴ `y=+-1`
Case II: When y = 0
from (5),` x^2+0-2x=0`
∴ `x(x-2)=0`
∴`x=0 or x=2`
∴ Stationary points are (1,1);(1,-1);(0,0);(2,0):
(i)At (1,1)
From (2), r = 6(1) – 6 = 0
∴ f is neither maximum or minimum at (1,1)
(ii)At (1,-1)
From (2), r = 6(1) – 6 = 0
∴ f is neither maximum or minimum at (1,-1)
(iii)At (0,0)
From (2), r = 6(0) – 6 = - 6 < 0
From (3), t = 6(0) – 6 = - 6
From (4), s = 6(0) = 0
∴ rt – s2 = (-6)(-6) – 0 = 36 > 0
∴ f has maximum at (0,0)
From (1), Maximum value of f
∴f = (0)3 + 3(0)(0)2 – 3(0)2 – 3(0)2 + 4 = 4
(iv)At (2,0)
From (2), r = 6(2) – 6 = 6 < 0
From (3), t = 6(2) – 6 = 6
From (4), s = 6(0) = 0
∴ `rt – s^2 = (6)(6) – 0 = 36 > 0``
∴" f has maximum at (2,0)
From (1), Minimum value of f"
`f=(2)^3+3(2)(0)^2-3(2)^0-3(2)^2-3(0)^2+4=0`
Hence the function has
Maximum at (0,0) and Maximum value = 4
Minimum at (2,0) and Minimum value = 0