Advertisements
Advertisements
Question
Using Newton Raphson method solve 3x – cosx – 1 = 0. Correct upto 3 decimal places.
Solution
Let f(x) = 3x – cosx – 1
∴f ‘ (x) = 3 + sinx – 0
When x = 0, f (0) = 3(0) – cos0 – 1 = -2
When x =1, f (1) = 3(1) – cos1 – 1 = 1.4597
∴ Roots of f (x) lies between 0 and 1.
Let initial value x0 = 0
By Newton-Raphson’s Method `x_(n+1)-f(x)/(f'(x))`
= `(x_n-3x_n-cosx_n-1)/(3+sinx_n)`
=`(x_n(3+sinx_n)-(3x_n-cosx_n-1))/(3+sinx_n)`
=`(3x^n+x_n sinx_n-3x_n+cosx_n+1)/(3+sinx_n)`
∴ `(x_(n+1)=x_nsinx_n+cosx_n+1)/(3+sinx_n)`
Iteration 1: Put n = 0 in (1)
∴`( x_1=x_0sinx_0+cosx_0+1)/(3+sinx_-0)=(0+cos0+1)/(3+sin0)=0.6667`
Iteration 2: Put n = 1 in (1)
∴` (x_2=x_1sinx_1+cosx_1)/(3+sinx_1)=(.6667sin(0.6667)+cos(0.6667)+1)/(3+sin(0.6667))=0.6075`
Iteration 3: Put n = 2 in (1)
∴`( x_3=x_2sinx_2+cosx_2+1)/(3+sin x_2)=(0.6075sin (0.6075)+cos(0.6075)+1)/(3+sin(0.6075))=0.6071`
Iteration 4: Put n = 3 in (1)
∴ `(x_4=x_3sin_3+cosx_3+1)/(3+sinx_3)=(06071sin(0.6071)+cos(0.6071)+1)/(3sin(0.6071))=0.6071`
`"Hence, Root of" 3x-cos-1=0 "is" 0.6071`
APPEARS IN
RELATED QUESTIONS
Show that `sin(e^x-1)=x^1+x^2/2-(5x^4)/24+`...................
Show that xcosecx = `1+x^2/6+(7x^4)/360+......`
If y= cos (msin_1 x).Prove that `(1-x^2)y_n+2-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0`
If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`
Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`
If` y= e^2x sin x/2 cos x/2 sin3x. "find" y_n`
Evaluate `Lim _(x→0) (cot x)^sinx.`
Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`
`"If" sin^4θcos^3θ = acosθ + bcos3θ + ccos5θ + dcos7θ "then find" a,b,c,d.`
Expand sec x by McLaurin’s theorem considering up to x4 term.