Advertisements
Advertisements
Question
Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`
Solution
Consider, log[sin(x+iy)]=log[sin x cos(iy) + cos x sin (iy)]
∴log[sin(x+iy)]=log[sin x cosh y + icos x sinh y] {∵cos(ix)=cosh x; sin (ix)=isinh x;}
∴` Log [sin(x+iy)]1/2log[sin^2 xcosh^2 y+cos^2 x sinh^2y]+itan^-1|(cosxsinhy)/(sin xcosh y)|`
`{∵ log (x-iy)=1/2 log (x^2+y^2)+itan^-1|y/x|}`
∴` log[sin(x+iy)]1/2log [sin^2x cosh^2 y+cos^2xx sinh^2 y]+|cot x tanh y|`
Taking Conjugate, `log[sin(x-iy)=1/2log [sin^2 x cosh^2 y +cos^2 x sinh^2 y]-itan^1|cotx tanh y|`
Now, log `[sin(x+iy)/sin(x-iy)]= log [sin(sin(x-iy)]`
= `{1/2 log [sin2 x cosh2y + cos2 x sinh2 y]+itan-1|cot x tanh y|}`- `{1/2 log [sin2 x cosh 2 y+ cos 2 x sinh2 y]-itan-1|cot x tanhy|}`
= `2 itan^-1(cot x tanh y)`
∴ `log [sin(x+iy)/sin(x-iy)]=2itan^-1 (cot x tanh y)`
APPEARS IN
RELATED QUESTIONS
Show that `sin(e^x-1)=x^1+x^2/2-(5x^4)/24+`...................
Using Newton Raphson method solve 3x – cosx – 1 = 0. Correct upto 3 decimal places.
Show that xcosecx = `1+x^2/6+(7x^4)/360+......`
If y= cos (msin_1 x).Prove that `(1-x^2)y_n+2-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0`
If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`
Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`
If` y= e^2x sin x/2 cos x/2 sin3x. "find" y_n`
Evaluate `Lim _(x→0) (cot x)^sinx.`
`"If" sin^4θcos^3θ = acosθ + bcos3θ + ccos5θ + dcos7θ "then find" a,b,c,d.`
Expand sec x by McLaurin’s theorem considering up to x4 term.