Advertisements
Advertisements
Question
`"If" sin^4θcos^3θ = acosθ + bcos3θ + ccos5θ + dcos7θ "then find" a,b,c,d.`
Solution
We know,` sinθ=(e^iθ-e^-iθ)/(2!)` and cosθ=`( e^iθ+e^-iθ)/2` …(1)
Consider, `sin^4θ cos^3θ=(e^(iθ)-e^-iθ)/2i xx(eiθ+e^-10)/2` (From 1)
= `1(/2^4i^4 2^3)xx(e^(iθ)-e^-(iθ)) (e^(iθ)-e^-(iθ) ^3(e^(iθ)+e^-(iθ))^3`
`1/2^7 xx (e^(iθ)-e^(-iθ)[(e^(iθ)^2 -(e^-(iθ))^2]^3 `
`1/2^7 xx (e^(iθ)-e^(-iθ))[(e^(2iθ))-(e^-( 2iθ ))]^3`
`1/2^7xx (e^(iθ)-e^(-iθ)) [(e^(2iθ))^3-3(e^(2iθ))^2(e^(-2iθ))+3(e^(2iθ))^2(e^(-2iθ))-(e^(2iθ))^3 ]`
`1/2^7xx(e^(iθ)-e^(-iθ)) [3e^(6iθ)-3e^(2iθ)+3 e^-(2iθ)-e^-(6iθ)]`
`1/2^7xx[e^(7iθ)-3e^(3iθ)+3e^(iθ)-e^(-5iθ)-e^(5iθ)+3e(iθ)-3e^(-3iθ)+e^(-7iθ)]`
`1/2^7[(e^(7iθ)+e^(-7iθ)-(e^(5iθ+e^(-5iθ)))-3(e^(3iθ)+e^(-3iθ))+(e^(iθ)+e^(-iθ))]`
=`1/128xx2cos7θ-1/128xx2cos5iθ-1/128xx6cos3iθ+1/128xx6cosiθ`
∴ `sin^4θcos^3θ=3/64 cosθ-3/64 cos3θ-1/64 cos5θ+1/64 cos 7θ `…(2)
But , given, `sin^4θcos3^θ = acosθ + bcos3θ + ccos5θ + dcos7θ` …(3)
Comparing (2) & (3), `a=3/64; b=(-3)/64 ; c=(-1)/64; d=1/64;`
APPEARS IN
RELATED QUESTIONS
Show that `sin(e^x-1)=x^1+x^2/2-(5x^4)/24+`...................
Using Newton Raphson method solve 3x – cosx – 1 = 0. Correct upto 3 decimal places.
Show that xcosecx = `1+x^2/6+(7x^4)/360+......`
If y= cos (msin_1 x).Prove that `(1-x^2)y_n+2-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0`
If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`
Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`
If` y= e^2x sin x/2 cos x/2 sin3x. "find" y_n`
Evaluate `Lim _(x→0) (cot x)^sinx.`
Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`
Expand sec x by McLaurin’s theorem considering up to x4 term.