English

If Coshx = Secθ Prove that (I) X = Log(Secθ+Tanθ). (Ii) θ = π 2 Tan − 1 ( E − X ) - Applied Mathematics 1

Advertisements
Advertisements

Question

If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`

Sum

Solution

coshx = secθ 

∴`( e^x+e^-x)/2=secθ `               {`∵ coshx=( e^x+e^-x)/2}`

∴` e^x+1/e^x=2secθ`

∴`(e^x)^2+1=2secθ e^x`

∴`(e^x)^2-2secθe^x+1=0`

∴ `e^x=(2secθ+- sqrt(4sec^2θ-4))/2`    `{∵ Using, x=(-b+-sqrt(b^2-4ac))/(2a)}`

∴` e^x=(2secθ+-sqrt(4(sec^2θ-1)))/2`

∴ `e^x=(2secθ+-2tanθ)/2`

∴` e^x= secθ+-tanθ`

Considering only positive root, 

∴` e^x=secθ+tanθ`

∴` x=log(secθ+tanθ)`

(ii) `"From" (1),e^x=1/cosθ+sinθ/cosθ`

∴` e^x=(1+sinθ)/cosθ` 

∴ `1/e^x=cosθ/(1+sinθ)`

∴ `e^-x=sin(pi/2-θ)/(1+cos(pi/2-θ))`

Put `α =pi/2-θ` 

∴ `e^-x=sinα/(1+cosα)`

∴ `e^-x=(2sin(alpha/2)cos(alpha/2))/(2cos^2(alpha/2))`   `{∵ 2 sinAcosA=sin2A;1+cos2A=2cos^2A}`

∴ `e^x=tan (α/2)`

∴` tan^-1(e^-1)=alpha/2`

∴`2tan^-1(e^-1)=alpha`

∴`2tan^-1(e^-1)=pi/2-θ`                      (From 2)

∴ `θ=pi/2-2tan^-1(e^-1)`

shaalaa.com
Expansion of 𝑒^𝑥 , sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x), log(1+x), 𝑠𝑖𝑛−1 (𝑥),𝑐𝑜𝑠−1 (𝑥),𝑡𝑎𝑛−1 (𝑥)
  Is there an error in this question or solution?
2017-2018 (December) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×