Advertisements
Advertisements
Question
If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`
Solution
coshx = secθ
∴`( e^x+e^-x)/2=secθ ` {`∵ coshx=( e^x+e^-x)/2}`
∴` e^x+1/e^x=2secθ`
∴`(e^x)^2+1=2secθ e^x`
∴`(e^x)^2-2secθe^x+1=0`
∴ `e^x=(2secθ+- sqrt(4sec^2θ-4))/2` `{∵ Using, x=(-b+-sqrt(b^2-4ac))/(2a)}`
∴` e^x=(2secθ+-sqrt(4(sec^2θ-1)))/2`
∴ `e^x=(2secθ+-2tanθ)/2`
∴` e^x= secθ+-tanθ`
Considering only positive root,
∴` e^x=secθ+tanθ`
∴` x=log(secθ+tanθ)`
(ii) `"From" (1),e^x=1/cosθ+sinθ/cosθ`
∴` e^x=(1+sinθ)/cosθ`
∴ `1/e^x=cosθ/(1+sinθ)`
∴ `e^-x=sin(pi/2-θ)/(1+cos(pi/2-θ))`
Put `α =pi/2-θ`
∴ `e^-x=sinα/(1+cosα)`
∴ `e^-x=(2sin(alpha/2)cos(alpha/2))/(2cos^2(alpha/2))` `{∵ 2 sinAcosA=sin2A;1+cos2A=2cos^2A}`
∴ `e^x=tan (α/2)`
∴` tan^-1(e^-1)=alpha/2`
∴`2tan^-1(e^-1)=alpha`
∴`2tan^-1(e^-1)=pi/2-θ` (From 2)
∴ `θ=pi/2-2tan^-1(e^-1)`
APPEARS IN
RELATED QUESTIONS
Show that `sin(e^x-1)=x^1+x^2/2-(5x^4)/24+`...................
Using Newton Raphson method solve 3x – cosx – 1 = 0. Correct upto 3 decimal places.
Show that xcosecx = `1+x^2/6+(7x^4)/360+......`
If y= cos (msin_1 x).Prove that `(1-x^2)y_n+2-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0`
Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`
If` y= e^2x sin x/2 cos x/2 sin3x. "find" y_n`
Evaluate `Lim _(x→0) (cot x)^sinx.`
Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`
`"If" sin^4θcos^3θ = acosθ + bcos3θ + ccos5θ + dcos7θ "then find" a,b,c,d.`
Expand sec x by McLaurin’s theorem considering up to x4 term.