Advertisements
Advertisements
Question
Evaluate `Lim _(x→0) (cot x)^sinx.`
Solution
Let` L= Lim _(x→0) (cot x)^sinx`
∴` logl=log{lim_(x→0)(cot x)^sinx}`
=`lim_(x→0){log(cotx)^sinx}`
=`lim_(x→0)sinx.log(cot x)`
=`lim_(x→0) log(cot x)/(cosec x)` `(∞/∞)`
=`lim_(x→0) (1/(cotx) .-cosec^2x)/(-cosec x cot x)` (L’ Hospital’s Rule)
=` Lim_x→0 tanx. 1/sin x. tan x`
=` Lim_x→0 tanx . 1/sin x. sin x/cos x`
= `tan o xx 1/cos 0`
∴ `log L = 0 `
∴ `L= e^0`
∴` Lim_x→0 (cot x)^sin x=1`
APPEARS IN
RELATED QUESTIONS
Show that `sin(e^x-1)=x^1+x^2/2-(5x^4)/24+`...................
Using Newton Raphson method solve 3x – cosx – 1 = 0. Correct upto 3 decimal places.
Show that xcosecx = `1+x^2/6+(7x^4)/360+......`
If y= cos (msin_1 x).Prove that `(1-x^2)y_n+2-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0`
If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`
Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`
If` y= e^2x sin x/2 cos x/2 sin3x. "find" y_n`
Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`
`"If" sin^4θcos^3θ = acosθ + bcos3θ + ccos5θ + dcos7θ "then find" a,b,c,d.`
Expand sec x by McLaurin’s theorem considering up to x4 term.