Advertisements
Advertisements
Question
If` y= e^2x sin x/2 cos x/2 sin3x. "find" y_n`
Solution
`y=e^(2x) sin x/2 cos x/2 sin 3x xx2/2`
=`1/2e^2x[sin2(x/2)]sin3 `{โต 2 sinAcosA=sin2A}`
=`1/2 e^(2x) sinxsin3x xx2/2`
=`1/4e^(2x)[cos(3x-x)-cos(3x+x)]` ` {โต2sinAsinB=cos(A-B)-cos(A+B)}`
∴`y=1/4[e^(2x)cos2x-e^(2x)cos4x]`
Taking `n^(th)` order derivative,`y_n=1/4{d_n/dx^n(e^(2x)cos2x)-d^n/dx^n(e^(2x) cos4x)}` …(1)
We know, If y =`e^(ax)cos(bx+c),y_n=r^n e^(ax)cos(bx+c+n∅)` …(2)
Here `a = 2, c = 0, b_1 = 2 and b_2 = 4`
∴ `r_1=sqrt(a^2+b_1^2)=sqrt(2^2+2^2)=sqrt8=8^1/2 and r2 =sqrt(a^2+b_2^2)=sqrt(2^2+4^2)=sqrt20=20 1/2` …(3)
And, `∅_1=tan (-1^b1)/a=tan^-1 2/2=tan^-1 1=pi/4 & ∅=tan ^-1b^2/a=tan (-1b_2)/a=tan^-1 2/4=tan -1 1/2 ` …(4)
∴ From (1),(2),(3) and (4),
`Y_n=1/4{(8 ^(1/2))^n e^2x cos (2x+0+0 n∅_1)+(20^(1/2))^n e^2x cos(4x+0+n∅_2)}`
∴`y=1/4 e^(2x) [8^(n/2) cos (2x+(npi)/4)+20^(n/2)cos(4x+n∅_2)]`Where` ∅_=tan^-1 1/2`
APPEARS IN
RELATED QUESTIONS
Show that `sin(e^x-1)=x^1+x^2/2-(5x^4)/24+`...................
Using Newton Raphson method solve 3x – cosx – 1 = 0. Correct upto 3 decimal places.
Show that xcosecx = `1+x^2/6+(7x^4)/360+......`
If y= cos (msin_1 x).Prove that `(1-x^2)y_n+2-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0`
If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`
Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`
Evaluate `Lim _(x→0) (cot x)^sinx.`
Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`
`"If" sin^4θcos^3θ = acosθ + bcos3θ + ccos5θ + dcos7θ "then find" a,b,c,d.`
Expand sec x by McLaurin’s theorem considering up to x4 term.