Advertisements
Advertisements
Question
Show that `sin(e^x-1)=x^1+x^2/2-(5x^4)/24+`...................
Solution
We have `sin(e^x-1)=sin(1+x+x^2/2+x^3/6+x^4/24...........-1)`
`therefore sin(e^x-1)=sin(x+x^2/2+x^3/6+x^4/24...........)`
But `sintheta=theta-theta^3/(3!)+theta^5/(5!)-......`
`therefore sin(e^x-1)=x+x^2/2+x^3/6+x^4/24+.......-1/6(x+x^2/2+........)^3+........`
`= x+x^2/2+x^3/6+x^4/24+......-x^3/6-x^4/4+......`
`= x+x^2/2-(5x^4)/24+.........`
APPEARS IN
RELATED QUESTIONS
Using Newton Raphson method solve 3x – cosx – 1 = 0. Correct upto 3 decimal places.
Show that xcosecx = `1+x^2/6+(7x^4)/360+......`
If y= cos (msin_1 x).Prove that `(1-x^2)y_n+2-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0`
If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`
Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`
If` y= e^2x sin x/2 cos x/2 sin3x. "find" y_n`
Evaluate `Lim _(x→0) (cot x)^sinx.`
Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`
`"If" sin^4θcos^3θ = acosθ + bcos3θ + ccos5θ + dcos7θ "then find" a,b,c,d.`
Expand sec x by McLaurin’s theorem considering up to x4 term.