English

If U = F ( Y − X X Y , Z − X X Z ) , Show that X 2 ∂ U ∂ X + Y 2 ∂ U ∂ Y + Z 2 ∂ U ∂ Z = 0 . - Applied Mathematics 1

Advertisements
Advertisements

Question

If u =`f((y-x)/(xy),(z-x)/(xz)),` show that `x^2(delu)/(delx)+y^2(delu)/(dely)+z^2(delu)/(delz)=0`.

Sum

Solution

let `u=f(r,s)`

`thereforer=(y-x)/(xy)     therefores=(z-x)/(xz)`

`therefore (delu)/(delx)=(delu)/(delr)(delr)/(delx)+(delu)/(dels)(dels)/(delx)=(delu)/(delr)1/(x^2)+(delu)/(dels)((-1)/x^2)`

`(delu)/(dely)=(delu)/(delr)(delr)/(dely)+(delu)/(dels)(dels)/(dely)=(delu)/(delr)(-1)/(y^2)+(delu)/(dels)(0)`

`(delu)/(delz)=(delu)/(delr)(delr)/(delz)+(delu)/(dels)(dels)/(delz)=(delu)/(delr)(0)+(delu)/(dels)((-1)/z^2)`

`therefore x^2(delu)/(delx)+y^2(delu)/(dely)+z^2(delu)/(delz)=(delu)/(delr)-(delu)/(dels)-(delu)/(delr)+(delu)/(dels)`

`x^2(delu)/(delx)+y^2(delu)/(dely)+z^2(delu)/(delz)=0`

Hence proved.

shaalaa.com
Euler’s Theorem on Homogeneous functions with two and three independent variables (with proof)
  Is there an error in this question or solution?
2017-2018 (June) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×