Advertisements
Advertisements
Question
State and Prove Euler’s Theorem for three variables.
Solution
Euler’s theorem:
Statement: If ‘u’ is a homogenous function of three variables x, y, z of degree ‘n’ then Euler’s theorem
States that
`x del_u/del_x+ydel_u/del_y+z del_u/del_z=n u`
Proof:
Let u = f (x, y, z) be the homogenous function of degree ‘n’.
Let X = xt, Y = yt, Z = zt
∴` (delx)/(delt)=x; (dely)/(delt)=y;(delz)/(delt)=z` …(1)
At t = 1, …(2)
X = x, Y = y, Z = z
∴ `(delf)/(delx)=(delf)/(delx);(delf)/(dely)=(delf)/(dely);(delf)/(delz)=(delf)/(delz)` …(3)
Now, f (X, Y, Z) = `t^n` f (x, y, z) …(4
∴f → X, Y, Z → x, y, z, t
Differentiating (4) partially` w.r.t. 't', (delf)/(delx).(delx)/(delt)+(delf)/(del).(dely)/(delt)+(delf)/(delz).(delz)/(delt)=nt^(n-1)f(x,yz)`
∴ `(delf)/(delx).x+(delf)/(dely).y+(delf)/(delz).z=n(1)^(n-1)f(x,y,z)` (From 1,2 & 3)
∴ `x(delu)/(delx)+y(delu)/(dely)+z(delu)/(delz)=n u`
APPEARS IN
RELATED QUESTIONS
If x = u+v+w, y = uv+vw+uw, z = uvw and φ is a function of x, y and z
Prove that
If tan(θ+iφ)=tanα+isecα
Prove that
1)`e^(2varphi)=cot(varphi/2)`
2) `2theta=npi+pi/2+alpha`
State Euler’s theorem on homogeneous function of two variables and if `u=(x+y)/(x^2+y^2)` then evaluate `x(delu)/(delx)+y(delu)/(dely`
If u =`f((y-x)/(xy),(z-x)/(xz)),` show that `x^2(delu)/(delx)+y^2(delu)/(dely)+z^2(delu)/(delz)=0`.
If `u=sin^(-1)((x+y)/(sqrtx+sqrty))`,Prove that
`x^2u_(x x)+2xyu_(xy)+y^2u_(yy)=(-sinu.cos2u)/(4cos^3u)`
State and prove Euler’s Theorem for three variables.
If z = f (x, y) where x = eu +e-v, y = e-u - ev then prove that `(delz)/(delu)-(delz)/(delv)=x(delz)/(delx)-y(delz)/(dely).`
If U `=sin^(-1)[(x^(1/3)+y^(1/3))/(x^(1/2)+y^(1/2))]`prove that `x^2(del^2u)/(del^2x)+2xy(del^2u)/(delxdely)+y^2(del^2u)/(del^2y)=(tanu)/144[tan^2"U"+13].`