English

If Tan(θ+Iφ)=Tanα+Isecα Prove that 1) E 2 φ = Cot ( φ 2 ) 2) 2 θ = N π + π 2 + α - Applied Mathematics 1

Advertisements
Advertisements

Question

If tan(θ+iφ)=tanα+isecα
Prove that
1)`e^(2varphi)=cot(varphi/2)`
2) `2theta=npi+pi/2+alpha`

Sum

Solution

tan(θ+iφ) = tanα+isecα     ∴tan(θ-iφ)=tanα-isecα

∴tan2θ = tan[(θ+iφ)+(θ-iφ)

`=(tan(theta+ivarphi)+tan(theta-ivarphi))/(1-tan(theta+ivarphi)tan(theta-ivarphi))`

`=(tan(theta+isecalpha)+tan(theta-isecalpha))/(1-tan(theta+isecalpha)tan(theta-isecalpha)`

`=(2tanalpha)/(1-(tan^2alpha+sec^2alpha))=(2tanalpha)/(-2tan^2alpha)-cotalpha=tan(pi/2+alpha)`

`therefore 2theta=npi+pi/2+alpha.` (general value).

Again `tan(2ivarphi)=tan[(theta+ivarphi)-[(theta-ivarphi)]`

`=(tan(theta+isecalpha)+tan(theta-isecalpha))/(1+tan(theta+isecalpha)tan(theta-isecalpha)`

`therefore itan2varphi=(2isecalpha)/(2sec^2alpha)=icosalpha`

`therefore tanh2varphi=cosalpha`

`therefore 2varphi=tanh^(-1)cosalphacosalpha1/2log[(1+cosalpha)/(1-cosalpha)]`

`=1/2log[(2cos^2(alpha/2))/(2sin^2(alpha/2))]logcot(alpha/2)`

shaalaa.com
Euler’s Theorem on Homogeneous functions with two and three independent variables (with proof)
  Is there an error in this question or solution?
2016-2017 (December) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×