English

If U = Sin − 1 ( X + Y √ X + √ Y ) ,Prove that X 2 U X X + 2 X Y U X Y + Y 2 U Y Y = − Sin U . Cos 2 U 4 Cos 3 U - Applied Mathematics 1

Advertisements
Advertisements

Question

If `u=sin^(-1)((x+y)/(sqrtx+sqrty))`,Prove that

`x^2u_(x x)+2xyu_(xy)+y^2u_(yy)=(-sinu.cos2u)/(4cos^3u)`

Sum

Solution

`u=sin^(-1)((x+y)/(sqrtx+sqrty))`

Put x = xt and y = yt to find degree.

`therefore u=sin^(-1)((xt+yt)/(sqrt(xt)+sqrt(yt)))`

`therefore sinu=t^(1/2)(x+y)/(sqrtx+sqrty)=t^(1/2).f(x,y)`

The function sin u is homogeneous with degree ½. 
But sin u is the function of u and u is the function of x and y.

By Euler’s theorem ,

`xu_x+yu_y=G(u)=n(f(u))/(f'(u))=1/2tanu`

`therefore x^2u_(x x)+2xyu_(xy)+y^2u_(yy)=G(u)[G'(u)-1]`

`=1/2tanu[(sec^2u-2)/2]`

`=1/4tanu[[tan^2u-1)/1]`

`=1/4xx(sinu)/(cosu)[(sin^2u-cos^2u)/(cos^2u)]`

`therefore x^2u_(x x)+2xyu_(xy)+y^2u_(yy)=(-sinu.cos2u)/(4cos^3u)`

Hence Proved.

shaalaa.com
Euler’s Theorem on Homogeneous functions with two and three independent variables (with proof)
  Is there an error in this question or solution?
2017-2018 (June) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×