English

State Euler’S Theorem on Homogeneous Function of Two Variables and If U = X + Y X 2 + Y 2 Then Evaluate X ∂ U ∂ X + Y ∂ U ∂ Y - Applied Mathematics 1

Advertisements
Advertisements

Question

State Euler’s theorem on homogeneous function of two variables and if `u=(x+y)/(x^2+y^2)` then evaluate `x(delu)/(delx)+y(delu)/(dely`

Sum

Solution

Euler’s theorem : If a function ‘u’ is homogeneous with degree ‘n’ then

`x(delu)/(delx)+y(delu)/(dely)=n u`

Let `u=(x+y)/(x^2+y^2)`

Put x = xt and y = yt 

F(x,y)`=(xt+yt)/((xt)^2+(yt)^2)=1/t[(x+y)/(x^2+y^2)]`

`=t^-1f(u)`

Hence the given function ‘u’ is homogeneous with degree n=-1

`therefore x(delu)/(delx)+y(delu)/(dely)=n u`

`therefore x(delu)/(delx)+y(delu)/(dely)=-[(x+y)/(x^2+y^2)]`

shaalaa.com
Euler’s Theorem on Homogeneous functions with two and three independent variables (with proof)
  Is there an error in this question or solution?
2017-2018 (June) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×