Advertisements
Advertisements
Question
If z = f (x, y) where x = eu +e-v, y = e-u - ev then prove that `(delz)/(delu)-(delz)/(delv)=x(delz)/(delx)-y(delz)/(dely).`
Solution
Given: z = f (𝑥, y) , x = eu +e-v ……… (1)
y = e-u - ev ………… (2)
By Chain Rule,
`(delz)/(delu)-(delzdelx)/(delvdelu)=(delzdely)/(delydelu)`……… (3)
And
`(delz)/(delv)-(delzdelx)/(delxdelv)=(delzdely)/(delydelv)`……… (3)
∴From equation 1 and 2,
`(delx)/(delu)=e^U` `(delx)/(delv)=-e^(-V)`
`(dely)/(delv)=-e^(-U)` `(dely)/(delv)=-e^(V)`
∴ From equation 3 and 4,
`(delz)/(delu)=e^U (delz)/(delx)- e^(-U)(delz)/(dely)`………. (5)
And
`(delz)/(delv)=e^(-V) (delz)/(delx)- e^V(delz)/(dely)`………. (6)
By Subtracting Equation 5 and 6,
`(delz)/(delu)-(delz)/(delv)=(e^U+e^(-V))(delz)/(delx)-(e^(-U)-e^V)(delz)/(dely)`
=` x (delz)/(delx)y(delz)/(dely)`……………………. (By using equation 1 and 2)
`(delz)/(delu)-(delz)/(delv)=x(delz)/(delx)-y(delz)/(dely)`
Hence proved.
APPEARS IN
RELATED QUESTIONS
If x = u+v+w, y = uv+vw+uw, z = uvw and φ is a function of x, y and z
Prove that
If tan(θ+iφ)=tanα+isecα
Prove that
1)`e^(2varphi)=cot(varphi/2)`
2) `2theta=npi+pi/2+alpha`
State Euler’s theorem on homogeneous function of two variables and if `u=(x+y)/(x^2+y^2)` then evaluate `x(delu)/(delx)+y(delu)/(dely`
If u =`f((y-x)/(xy),(z-x)/(xz)),` show that `x^2(delu)/(delx)+y^2(delu)/(dely)+z^2(delu)/(delz)=0`.
If `u=sin^(-1)((x+y)/(sqrtx+sqrty))`,Prove that
`x^2u_(x x)+2xyu_(xy)+y^2u_(yy)=(-sinu.cos2u)/(4cos^3u)`
State and Prove Euler’s Theorem for three variables.
State and prove Euler’s Theorem for three variables.
If U `=sin^(-1)[(x^(1/3)+y^(1/3))/(x^(1/2)+y^(1/2))]`prove that `x^2(del^2u)/(del^2x)+2xy(del^2u)/(delxdely)+y^2(del^2u)/(del^2y)=(tanu)/144[tan^2"U"+13].`