Advertisements
Advertisements
प्रश्न
किसी भी सदिश `vec"a"` के लिए `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` का मान बराबर है
पर्याय
`vec"a"^2`
`3vec"a"^2`
`4vec"a"^2`
`2vec"a"^2`
उत्तर
सही उत्तर `underline(2vec"a"^2)` है।
व्याख्या:
मान लीजिए कि `vec"a" = "a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k"`
∴ `vec"a"^2 = "a"_1^2 + "a"_2^2 + "a"_3^2`
अब, `vec"a" xx hat"i" = ("a"_1hat"i" + "a"2hat"j" + "a"_3hat"k") xx hat"i"`
= `|(hat"i", hat"j", hat"k"),("a"_1, "a"_2, "a"_3),(1, 0, 0)|`
= `hat"i"(0 - 0) - hat"j"(0 - "a"_3) + hat"k"(0 - "a"_2)`
= `"a"_3hat"j" - "a"_2hat"k"`
∴ `(vec"a" xx hat"i")^2 = ("a"_3hat"j" - "a"_2hat"k") * ("a"_3hat"j" - "a"_2hat"k")`
= `"a"_3^2 + "a"_2^2`
इसी प्रकार `(vec"a" xx hat"i")^2 = "a"_1^2 + "a"_3^2`
और `(vec"a" xx hat"k")^2 = "a"_1^2 + "a"_2^2`
∴ `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2 = "a"_3^2 + "a"_2^2 + "a"_1^2 + "a"_3^2 + "a"_1^2 + "a"_2^2`
= `2("a"_1^2 + "a"_2^2 + "a"_3^2)`
= `2vec"a"^2`
APPEARS IN
संबंधित प्रश्न
यदि बिंदु P और Q क्रमश: (1, 3, 2) और (-1, 0, 8) है, तो `vec"PQ"`, के विपरीत दिशा में परिमाण 11 का एक सदिश ज्ञात कीजिए।
यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।
परिमाण 3`sqrt2` का एक सदिश `vec"r"` ज्ञात कीजिए जो y और z-अक्षों से क्रमशः कोण `pi/4` और `pi/2` बनाता है।
परिमाण 10`sqrt3` वाले उन सभी सदिशों को ज्ञात कीजिए जो `hat"i" + 2hat"j" + hat"k"` और `-hat"i" + 3hat"j" + 4hat"k"` को अंतर्विष्ट करने वाले तल पर लंब हो।
सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB
सदिश `6vec"i" + 2vec"j" + 3vec"k"` का परिमाण है
उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,
प्रारम्भिक बिंदु P (2, - 3, 5) और अंतिम बिंदु Q(3, -4, 7) वाला सदिश है
सदिश `vec"i" - vec"j"` और सदिश `vec"j" - vec"k"` के बीच का कोण है
समांतर चतुर्भुज, का क्षेत्रफल जिसकी संलग्न भुजाएँ `hat"i" + hat"k"` और `2hat"i" + hat"j"+ hat"k"` है
यदि `|vec"a"| = 8, |vec"b"| = 3` और `|vec"a" xx vec"b"| = 12` है, तो `vec"a"*vec"b"` बराबर है
यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3) vec"a" - vec"b"` के मात्रक सदिश होने के लिए `vec"a"` और `vec"b"` के बीच क्या कोण होगा?
एक मात्रक सदिश जो सदिशों `hat"i" - hat"j"` और `hat"i" + hat"j"` दोनों के लंबवत है तथा एक दक्षिणावर्ती पद्धति को निर्मित करने वाला सदिश है।
यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `6vec"b"`
यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `hat"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `2vec"a" - vec"b"`
सदिश दर `vec"a" = 3hat"i" + hat"j" + 2hat"k"` तथा सदिश `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"` के बीच का sine ज्ञात कीजिए।
यदि `vec"a", vec"b", vec"c"` इस प्रकार के मात्रक सदिश हैं कि `vec"a" + vec"b" + vec"c"` = 0 है तो `vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a"` का मान
यदि तीन सदिश `vec"a", vec"b", vec"c"` इस प्रकार हैं कि `vec"a" + vec"b" + vec"a" = vec0` और `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, है, तो `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` का मान
सदिश `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` और `vec"b" = -hat"i" - 2hat"k"` एक समांतर चतुर्भुज है। इसके विकर्णों के बीच का न्यूनकोंण ______ है।
यदि k के मानों के लिए `|"k"vec"a"| < |vec"a"|` और `"k"vec"a" + 1/2 vec"a"` सदिश `vec"a"` के समांतर है, तो k के मान ______ हैं।
व्यंजक `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` का मान ______ है।
किसी बिंदु P का स्थिति सदिश का प्रारंभिक बिंदु मूल बिंदु होता है।
यदि `vec"a"` और `vec"b"` समचतुर्भुज की संलग्न भुजाएँ हैं तब `vec"a" * vec"b"` = 0 है।