Advertisements
Advertisements
प्रश्न
किसी बक्से में 1000 सील किये हुए लिफाफे हैं। इनमें से 10 ऐसे लिफाफे हैं, जिनमें से प्रत्येक में 100 रु का एक नकद पुरस्कार है, 100 में से प्रत्येक में 50 रु का एक नकद पुरस्कार है और 200 में से प्रत्येक में 10 रु का एक नकद पुरस्कार है तथा शेष में कोई नकद पुरस्कार नहीं है। इनको अच्छी प्रकार से मिलाकर, एक लिफाफा बाहर निकाला जाता है। इसकी प्रायिकता ज्ञात कीजिए कि इस लिफाफे में कोई नकद पुरस्कार न हो।
उत्तर
एक बक्से में सीलबंद लिफाफों की कुल संख्या, n(S) = 1000
नकद पुरस्कार वाले लिफाफों की संख्या = 10 + 100 + 200 = 310
बिना नकद पुरस्कार वाले लिफाफों की संख्या,
n(E) = 1000 – 310 = 690
∴ `P(E) = (n(E))/(n(S)) = 690/1000 = 69/100` = 0.69
APPEARS IN
संबंधित प्रश्न
किसी घटना का घटित होना बहुत कम संभावित है। इसकी प्रायिकता निम्नलिखित के निकटतम है:
52 ताशों की एक गड्डी में से एक ताश निकाला जाता है। इसके लाल रंग का मुख कार्ड होने की प्रायिकता ______ है।
इसकी प्रायिकता कि यादृच्छिक रूप से चुने गए एक ऐसे वर्ष में, जो अधिवर्ष (leap year) न हो 53 रविवार हों, निम्नलिखित है :
बच्चों के एक खेल में, 8 त्रिभुज हैं, जिसमें से 3 नीले और शेष लाल हैं। साथ ही, इस खेल में 10 वर्ग हैं जिसमें से 6 नीले हैं और शेष लाल हैं। इनमें से एक टुकड़ा यादृच्छिक रूप से खो जाता है। इस टुकड़े के निम्नलिखित होने की प्रायिकता ज्ञात कीजिए -
त्रिभुज
बच्चों के एक खेल में, 8 त्रिभुज हैं, जिसमें से 3 नीले और शेष लाल हैं। साथ ही, इस खेल में 10 वर्ग हैं जिसमें से 6 नीले हैं और शेष लाल हैं। इनमें से एक टुकड़ा यादृच्छिक रूप से खो जाता है। इस टुकड़े के निम्नलिखित होने की प्रायिकता ज्ञात कीजिए -
नीले रंग का वर्ग
फुटबाल के एक खिलाड़ी द्वारा 10 मैचों में किए गए गोलों की संख्या निम्नलिखित है :
1, 3, 2, 5, 8, 6, 1, 4, 7, 9
क्योंकि मैचों की संख्या 10 (एक सम संख्या) है, इसलिए
`"माध्यक" = (5^ "वाँ" "प्रेक्षण" +6^"वाँ" "प्रेक्षण")/2 = (8+ 6)/2 = 7`
क्या यह सही उत्तर है और क्यों?
क्या किसी घटना की प्रायोगिक प्रायिकता एक ऋणात्मक संख्या हो सकती है? यदि नहीं, तो क्यों?
जैसे-जैसे एक सिक्के के उछालों की संख्या बढ़ती जाती है, चितों की संख्या और पटों की संख्या का अनुपात `1/2` हो जाता है। क्या यह सही है? यदि नहीं, तो इसे सही रूप में लिखिए।
दो पासों को एक साथ 500 बार फेंका जाता है। प्रत्येक बार उनके ऊपर आई संख्याओं के योग को ज्ञात करके नीचे दी गई सारणी के अनुसार रिकार्ड किया गया है :
योग | बारंबारता |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
यदि इन पासों को एक बार पुनः फेंका जाए तो निम्नलिखित योग ज्ञात करने की क्या प्रायकिता है?
10 से अधिक
पिछले 200 कार्य दिवसों में, किसी मशीन द्वारा निर्मित खराब पुर्जों की संख्या निम्नलिखित सारणी में दी गई है :
खराब पुर्जों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
दिन | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
इसकी प्रायिकता निर्धारित कीजिए कि कल के उत्पादन में 13 से अधिक खराब पुर्जे होंगे।