English

किसी बक्से में 1000 सील किये हुए लिफाफे हैं। इनमें से 10 ऐसे लिफाफे हैं, जिनमें से प्रत्येक में 100 रु का एक नकद पुरस्कार है, 100 में से प्रत्येक में 50 रु का एक नकद पुरस्कार है - Mathematics (गणित)

Advertisements
Advertisements

Question

किसी बक्से में 1000 सील किये हुए लिफाफे हैं। इनमें से 10 ऐसे लिफाफे हैं, जिनमें से प्रत्येक में 100 रु का एक नकद पुरस्कार है, 100 में से प्रत्येक में 50 रु का एक नकद पुरस्कार है और 200 में से प्रत्येक में 10 रु का एक नकद पुरस्कार है तथा शेष में कोई नकद पुरस्कार नहीं है। इनको अच्छी प्रकार से मिलाकर, एक लिफाफा बाहर निकाला जाता है। इसकी प्रायिकता ज्ञात कीजिए कि इस लिफाफे में कोई नकद पुरस्कार न हो।

Sum

Solution

एक बक्से में सीलबंद लिफाफों की कुल संख्या, n(S) = 1000

नकद पुरस्कार वाले लिफाफों की संख्या = 10 + 100 + 200 = 310

बिना नकद पुरस्कार वाले लिफाफों की संख्या,

n(E) = 1000 – 310 = 690

∴ `P(E) = (n(E))/(n(S)) = 690/1000 = 69/100` = 0.69

shaalaa.com
भूमिका: प्रायिकता
  Is there an error in this question or solution?
Chapter 13: साँख्यिकी और प्रायिकता - प्रश्नावली 13.3 [Page 176]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 13 साँख्यिकी और प्रायिकता
प्रश्नावली 13.3 | Q 34. | Page 176

RELATED QUESTIONS

यदि कोई घटना घटित नहीं हो सकती है, तो उसकी प्रायिकता ______ है।


किसी विशेष घटना के घटित होने की प्रायिकता प्रतिशत के रूप में व्यक्त करने पर, निम्नलिखित कभी नहीं हो सकती ______।


इसकी प्रायिकता कि यादृच्छिक रूप से चुने गए एक ऐसे वर्ष में, जो अधिवर्ष (leap year) न हो 53 रविवार हों, निम्नलिखित है :


अंग्रेजी वर्णमाला के एक अक्षर को यादृच्छिक रूप से चुना जाता है। इसकी प्रायिकता निर्धारित कीजिए कि यह अक्षर एक व्यंजक है।


क्या किसी घटना की प्रायोगिक प्रायिकता 1 से अधिक हो सकती है? अपने उत्तर का औचित्य दीजिए। 


दो पासों को एक साथ 500 बार फेंका जाता है। प्रत्येक बार उनके ऊपर आई संख्याओं के योग को ज्ञात करके नीचे दी गई सारणी के अनुसार रिकार्ड किया गया है :    

योग बारंबारता
2 14
3 30
4 42
5 55
6 72
7 75
8 70
9 53
10 46
11 28
12 15

यदि इन पासों को एक बार पुनः फेंका जाए तो निम्नलिखित योग ज्ञात करने की क्या प्रायकिता है? 

8 और 12 के बीच


पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :

खराब बल्बों की संख्या 0 1 2 3 4 5 6 6 से अधिक
बारंबारता 400 180 48 41 18 8 3 2

इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में खराब बल्बों की संख्या 2 से 6 तक होगी?


पिछले 200 कार्य दिवसों में, किसी मशीन द्वारा निर्मित खराब पुर्जों की संख्या निम्नलिखित सारणी में दी गई है : 

खराब पुर्जों की संख्या 0 1 2 3 4 5 6 7 8 9 10 11 12 13
दिन 50 32 22 18 12 12 10 10 10 8 6 6 2 2

इसकी प्रायिकता निर्धारित कीजिए कि कल के उत्पादन में

  1. कोई खराब पुर्जा नहीं होगा।
  2. न्यूनतम एक खराब पुर्जा होगा।
  3. 5 से अधिक खराब पुर्जे नहीं होंगे।
  4. 13 से अधिक खराब पुर्जे होंगे।

पिछले 200 कार्य दिवसों में, किसी मशीन द्वारा निर्मित खराब पुर्जों की संख्या निम्नलिखित सारणी में दी गई है : 

खराब पुर्जों की संख्या 0 1 2 3 4 5 6 7 8 9 10 11 12 13
दिन 50 32 22 18 12 12 10 10 10 8 6 6 2 2

इसकी प्रायिकता निर्धारित कीजिए कि कल के उत्पादन में 5 से अधिक खराब पुर्जे नहीं होंगे।


कुछ समय पहले ही किए गए एक सर्वे में यह पाया गया कि एक फैक्ट्री के श्रमिकों की आयु का बंटन निम्नलिखित है : 

आयु (वर्षों में) 20 – 29 30 – 39 40 – 49 50 – 59 60 और उससे ऊपर
श्रमिकों की संख्या 38 27 86 46 3

यदि इनमें से एक व्यक्ति यादृच्छिक रूप से चुना जाता है तो इसकी क्या प्रायिकता है कि वह व्यक्ति

  1. 40 वर्ष या उससे अधिक आयु का होगा?
  2. 40 वर्ष से कम आयु का होगा?
  3. 30 और 39 वर्ष के बीच की आयु का होगा?
  4. 60 वर्ष से कम आयु का होगा परंतु 39 वर्ष से अधिक होगा?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×