मराठी

Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B

बेरीज

उत्तर

Given that: A = {– 1, 2, 3} and B = {1, 3}

A × B = {(– 1, 1), (– 1, 3), (2, 1), (2, 3), (3, 1), (3, 3)}

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Exercise [पृष्ठ २७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 2 Relations and Functions
Exercise | Q 1.(i) | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.


Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.


The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.


If A = {1, 2} and B = {1, 3}, find A × B and B × A.


If A = {1, 2, 3} and B = {2, 4}, what are A × BB × AA × AB × B and (A × B) ∩ (B × A)?


Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common. 


If A = {−1, 1}, find A × A × A.


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iv) (A × B) ∪ (A × C)

 

 


Prove that:

(i)  (A ∪ B) × C = (A × C) ∪ (B × C)

(ii) (A ∩ B) × C = (A × C) ∩ (B×C)

 

If A × B ⊆ C × D and A × B ≠ ϕ, prove that A ⊆ C and B ⊆ D.

 

Find the domain of the real valued function of real variable: 

(i)  \[f\left( x \right) = \frac{1}{x}\]

 


Find the domain of the real valued function of real variable: 

(ii)  \[f\left( x \right) = \frac{1}{x - 7}\]

 


Find the domain of the real valued function of real variable: 

(iii) \[f\left( x \right) = \frac{3x - 2}{x + 1}\]

 


Find the domain of the real valued function of real variable: 

(iv)  \[f\left( x \right) = \frac{2x + 1}{x^2 - 9}\]

 


Find the domain of the real valued function of real variable:

(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]

 


Find the domain and range of the real valued function:

(vi) \[f\left( x \right) = \left| x - 1 \right|\] 

 


Find the domain and range of the real valued function:

(ix)  \[f\left( x \right) = \frac{1}{\sqrt{16 - x^2}}\]


Find the domain and range of the real valued function:

(x)  \[f\left( x \right) = \sqrt{x^2 - 16}\]


Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in :

(a) If f(x) = x3 + 1 and g(x) = x + 1


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine A × B 


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?


If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × A


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × B


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A


State True or False for the following statement.

If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, then (A × B) ∪ (A × C) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}.


State True or False for the following statement.

If A × B = {(a, x), (a, y), (b, x), (b, y)}, then A = {a, b}, B = {x, y}


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×