मराठी

Find F + G, F − G, Cf (C ∈ R, C ≠ 0), Fg, 1 F and F G in : (A) If F(X) = X3 + 1 and G(X) = X + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in :

(a) If f(x) = x3 + 1 and g(x) = x + 1

उत्तर

(a) Given:
(x)  = x3  + 1 and g (x) = x + 1
Thus,
(g) (x) : R → R is given by (f + g) (x) = (x) + g (x) = x3 + 1 + x + 1 = x3 + x + 2.
(f - g) (x) : R → R is given by (f - g) (x) = f (x) - g (x) = (x3 + 1) - (x + 1 ) = x3 + 1 -x -  1 = x3 - x.
cf : R → R is given by (cf) (x) = c (x3  + 1).
(fg) (x) : R → R is given by (fg) (x) = f(x).g(x) = (x3 + 1) (x + 1) = (x + 1) (x2x + 1) (x + 1) = (x + 1)2 (x2x + 1).

\[\frac{1}{f}: R - \left\{ - 1 \right\} \to R\text{  is given by} \left( \frac{1}{f} \right)\left( x \right) = \frac{1}{f\left( x \right)} = \frac{1}{\left( x^3 + 1 \right)} .\]

\[\frac{f}{g}: R - \left\{ - 1 \right\} \to \text{ R isgiven by} \left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{\left( x^3 + 1 \right)}{\left( x + 1 \right)} = \frac{\left( x + 1 \right)\left( x^2 - x + 1 \right)}{\left( x + 1 \right)} = \left( x^2 - x + 1 \right) .\]

Note that : (x3 + 1) = (x + 1) (x2x + 1)]
 
 
 

 

 
 
 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.4 | Q 1.1 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ.


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × (B ∩ C) = (A × B) ∩ (A × C)


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that   A × C is a subset of B × D


If A = {1, 2} and B = {1, 3}, find A × B and B × A.


If A = {1, 2, 3} and B = {2, 4}, what are A × BB × AA × AB × B and (A × B) ∩ (B × A)?


If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].


Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common. 


If A = {−1, 1}, find A × A × A.


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.

 

If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).

 

Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:

(i) A × C ⊂ B × D


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(i) A × (B ∩ C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iii) A × (B ∪ C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iv) (A × B) ∪ (A × C)

 

 


Prove that:

(i)  (A ∪ B) × C = (A × C) ∪ (B × C)

(ii) (A ∩ B) × C = (A × C) ∩ (B×C)

 

If A × B ⊆ C × D and A × B ≠ ϕ, prove that A ⊆ C and B ⊆ D.

 

Find the domain of the real valued function of real variable: 

(i)  \[f\left( x \right) = \frac{1}{x}\]

 


Find the domain of the real valued function of real variable: 

(iii) \[f\left( x \right) = \frac{3x - 2}{x + 1}\]

 


Find the domain of the real valued function of real variable:

(i) \[f\left( x \right) = \sqrt{x - 2}\]

 


Find the domain of the real valued function of real variable:

(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]

 


Find the domain of the real valued function of real variable:

(iii) \[f\left( x \right) = \sqrt{9 - x^2}\]

 


Find the domain and range of the real valued function:

(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]

 


Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 


Find the domain and range of the real valued function:

(iv) \[f\left( x \right) = \sqrt{x - 3}\]

 


Find the domain and range of the real valued function:

(ix)  \[f\left( x \right) = \frac{1}{\sqrt{16 - x^2}}\]


Let f(x) = 2x + 5 and g(x) = x2 + x. Describe (i) f + g (ii) f − g (iii) fg (iv) f/g. Find the domain in each case.

 

If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\]  and g(x)

\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).

 
 
 

Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine A × B 


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is n (A × B) = n (B × A)?


A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)


State True or False for the following statement.

If P = {1, 2}, then P × P × P = {(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)}


The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×