Advertisements
Advertisements
प्रश्न
If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).
उत्तर
Given:
A = {2, 3}, B = {4, 5} and C ={5, 6}
Also,
(B ∪ C) = {4, 5, 6}
Thus, we have:
A × (B ∪ C) = {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3,6)}
And,
(B ∩ C) = {5}
Thus, we have:
A × (B ∩ C) = {(2, 5), (3, 5)}
Now,
(A × B) = {(2, 4), (2, 5), (3, 4), (3, 5)}
(A × C) = {(2, 5), (2, 6), (3, 5), (3, 6)}
∴ (A × B) ∪ (A × C) = {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}
APPEARS IN
संबंधित प्रश्न
If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.
State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.
If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.
State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.
If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (x, y) such that x ∈ A and y ∈ B.
State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.
If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ.
If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.
The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.
If A = {1, 2} and B = {1, 3}, find A × B and B × A.
If A = {1, 2, 3} and B = {2, 4}, what are A × B, B × A, A × A, B × B and (A × B) ∩ (B × A)?
Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common.
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.
Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:
(i) A × C ⊂ B × D
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(ii) (A × B) ∩ (A × C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(iii) A × (B ∪ C)
Prove that:
(i) (A ∪ B) × C = (A × C) ∪ (B × C)
(ii) (A ∩ B) × C = (A × C) ∩ (B×C)
Find the domain of the real valued function of real variable:
(i) \[f\left( x \right) = \frac{1}{x}\]
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{x - 7}\]
Find the domain of the real valued function of real variable:
(v) \[f\left( x \right) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}\]
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]
Find the domain and range of the real valued function:
(ii) \[f\left( x \right) = \frac{ax - b}{cx - d}\]
Find the domain and range of the real valued function:
(vi) \[f\left( x \right) = \left| x - 1 \right|\]
Find the domain and range of the real valued function:
(vii) \[f\left( x \right) = - \left| x \right|\]
Find the domain and range of the real valued function:
(ix) \[f\left( x \right) = \frac{1}{\sqrt{16 - x^2}}\]
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine A × B
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is A × B = B × A?
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is n (A × B) = n (B × A)?
If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.
Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B
Let A = {–1, 2, 3} and B = {1, 3}. Determine B × B
If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)
State True or False for the following statement.
If A × B = {(a, x), (a, y), (b, x), (b, y)}, then A = {a, b}, B = {x, y}
The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.