मराठी

If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G. - Mathematics

Advertisements
Advertisements

प्रश्न

If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.

बेरीज

उत्तर

G = {7, 8} and H = {5, 4, 2}

We know that the Cartesian product P × Q of two non-empty sets P and Q is defined as

P × Q = {(p, q): p ∈ P, q ∈ Q}

∴G × H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)}

H × G = {(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)}

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Exercise 2.1 [पृष्ठ ३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 2 Relations and Functions
Exercise 2.1 | Q 3 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ.


Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.


If A and B are two set having 3 elements in common. If n(A) = 5, n(B) = 4, find n(A × B) and n[(A × B) ∩ (B × A)].


Let A = {1, 2, 3, 4} and R = {(ab) : a ∈ Ab ∈ Aa divides b}. Write R explicitly. 


If A = {−1, 1}, find A × A × A.


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.

 

If A = {1, 2}, from the set A × A × A.


Given A = {1, 2, 3}, B = {3, 4}, C ={4, 5, 6}, find (A × B) ∩ (B × C ).

 

If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).

 

If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(ii) A × (B ∩ C) = (A × B) ∩ (A × C)


If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(iii) A × (B − C) = (A × B) − (A × C)


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:

(i) A × C ⊂ B × D


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(i) A × (B ∩ C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(ii) (A × B) ∩ (A × C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iii) A × (B ∪ C)


If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(iv) (A × B) ∪ (A × C)

 

 


Find the domain of the real valued function of real variable: 

(ii)  \[f\left( x \right) = \frac{1}{x - 7}\]

 


Find the domain of the real valued function of real variable:  

(v)  \[f\left( x \right) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}\]

 


Find the domain of the real valued function of real variable:

(i) \[f\left( x \right) = \sqrt{x - 2}\]

 


Find the domain of the real valued function of real variable:

(iii) \[f\left( x \right) = \sqrt{9 - x^2}\]

 


Find the domain of the real valued function of real variable:

(iv)  \[f\left( x \right) = \frac{\sqrt{x - 2}}{3 - x}\]

 


Find the domain and range of the real valued function:

(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]

 


Find the domain and range of the real valued function:

(iv) \[f\left( x \right) = \sqrt{x - 3}\]

 


Find the domain and range of the real valued function:

(v) \[f\left( x \right) = \frac{x - 2}{2 - x}\]


Find the domain and range of the real valued function:

(vii)  \[f\left( x \right) = - \left| x \right|\]

 


Find the domain and range of the real valued function:

(x)  \[f\left( x \right) = \sqrt{x^2 - 16}\]


If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\]  and g(x)

\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).

 
 
 

Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A


If A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54}, a ∈ A, b ∈ B, find the set of ordered pairs such that 'a' is factor of 'b' and a < b.


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × A


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A


The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×