Advertisements
Advertisements
प्रश्न
Find the domain and range of the real valued function:
(iv) \[f\left( x \right) = \sqrt{x - 3}\]
उत्तर
Given:
Hence, domain ( f ) = [3, ∞)
Range of f : For x ≥ 3, we have:
x-3 ≥ 0
Thus, f (x) takes all real values greater than zero.
Hence, range (f) = [0, ∞) .
APPEARS IN
संबंधित प्रश्न
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).
If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.
If A = {–1, 1}, find A × A × A.
If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.
Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that A × C is a subset of B × D
The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.
If A = {1, 2} and B = {1, 3}, find A × B and B × A.
If A = {1, 2, 3} and B = {2, 4}, what are A × B, B × A, A × A, B × B and (A × B) ∩ (B × A)?
Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common.
State whether of the statement is true or false. If the statement is false, re-write the given statement correctly:
If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}
Given A = {1, 2, 3}, B = {3, 4}, C ={4, 5, 6}, find (A × B) ∩ (B × C ).
If A = {2, 3}, B = {4, 5}, C ={5, 6}, find A × (B ∪ C), A × (B ∩ C), (A × B) ∪ (A × C).
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:
(ii) A × (B ∩ C) = (A × B) ∩ (A × C)
If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:
(iii) A × (B − C) = (A × B) − (A × C)
If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(iv) (A × B) ∪ (A × C)
If A × B ⊆ C × D and A × B ≠ ϕ, prove that A ⊆ C and B ⊆ D.
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{x - 7}\]
Find the domain of the real valued function of real variable:
(ii) \[f\left( x \right) = \frac{1}{\sqrt{x^2 - 1}}\]
Find the domain and range of the real valued function:
(iii) \[f\left( x \right) = \sqrt{x - 1}\]
Find the domain and range of the real valued function:
(x) \[f\left( x \right) = \sqrt{x^2 - 16}\]
Find f + g, f − g, cf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{ and } \frac{f}{g}\] in :
(b) If \[f\left( x \right) = \sqrt{x - 1}\] and \[g\left( x \right) = \sqrt{x + 1}\]
Let f(x) = 2x + 5 and g(x) = x2 + x. Describe (i) f + g (ii) f − g (iii) fg (iv) f/g. Find the domain in each case.
If f(x) be defined on [−2, 2] and is given by \[f\left( x \right) = \begin{cases}- 1, & - 2 \leq x \leq 0 \\ x - 1, & 0 < x \leq 2\end{cases}\] and g(x)
\[= f\left( \left| x \right| \right) + \left| f\left( x \right) \right|\] , find g(x).
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine A × B
Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine is n (A × B) = n (B × A)?
Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B
Let A = {–1, 2, 3} and B = {1, 3}. Determine B × B
Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A
If P = {x : x < 3, x ∈ N}, Q = {x : x ≤ 2, x ∈ W}. Find (P ∪ Q) × (P ∩ Q), where W is the set of whole numbers.
If A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∪ C)