मराठी

If a = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, Find(Ii) (A × B) ∩ (A × C) - Mathematics

Advertisements
Advertisements

प्रश्न

If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find

(ii) (A × B) ∩ (A × C)

उत्तर

Given:
A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}

(ii) (A × B) ∩ (A × C)
Now,
(A × B) = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}
And,
(A × C) = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}
∴ (A × B) ∩ (A × C) = {(1, 4), (2, 4), (3, 4)}

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations - Exercise 2.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 2 Relations
Exercise 2.2 | Q 5.2 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).


If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.


State whether the following statement is true or false. If the statement is false, rewrite the given statement correctly.

If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ.


If A = {–1, 1}, find A × A × A.


If A × B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.


Let A and B be two sets. Show that the sets A × B and B × A have elements in common iff the sets A and B have an elements in common. 


Let A = {1, 2, 3, 4} and R = {(ab) : a ∈ Ab ∈ Aa divides b}. Write R explicitly. 


State whether of  the statement is true or false. If the statement is false, re-write the given statement correctly:

(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ϕ) = ϕ.

 

If A = {1, 2}, from the set A × A × A.


Given A = {1, 2, 3}, B = {3, 4}, C ={4, 5, 6}, find (A × B) ∩ (B × C ).

 

If A = {1, 2, 3}, B = {4}, C = {5}, then verify that:

(iii) A × (B − C) = (A × B) − (A × C)


Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:

(i) A × C ⊂ B × D


Prove that:

(i)  (A ∪ B) × C = (A × C) ∪ (B × C)

(ii) (A ∩ B) × C = (A × C) ∩ (B×C)

 

Find the domain of the real valued function of real variable: 

(iv)  \[f\left( x \right) = \frac{2x + 1}{x^2 - 9}\]

 


Find the domain of the real valued function of real variable:  

(v)  \[f\left( x \right) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}\]

 


Find the domain of the real valued function of real variable:

(i) \[f\left( x \right) = \sqrt{x - 2}\]

 


Find the domain of the real valued function of real variable:

(iii) \[f\left( x \right) = \sqrt{9 - x^2}\]

 


Find the domain of the real valued function of real variable:

(iv)  \[f\left( x \right) = \frac{\sqrt{x - 2}}{3 - x}\]

 


Find the domain and range of the real valued function:

(i) \[f\left( x \right) = \frac{ax + b}{bx - a}\]

 


Find the domain and range of the real valued function:

(iii)  \[f\left( x \right) = \sqrt{x - 1}\]

 


Find the domain and range of the real valued function:

(v) \[f\left( x \right) = \frac{x - 2}{2 - x}\]


Find the domain and range of the real valued function:

(x)  \[f\left( x \right) = \sqrt{x^2 - 16}\]


Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in :

(a) If f(x) = x3 + 1 and g(x) = x + 1


Find f + gf − gcf (c ∈ R, c ≠ 0), fg, \[\frac{1}{f}\text{  and } \frac{f}{g}\] in : 

(b) If \[f\left( x \right) = \sqrt{x - 1}\]  and  \[g\left( x \right) = \sqrt{x + 1}\]

 


Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine B × A


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × B


Let A = {–1, 2, 3} and B = {1, 3}. Determine B × A


Let A = {–1, 2, 3} and B = {1, 3}. Determine A × A


A = {x : x ∈ W, x < 2} B = {x : x ∈ N, 1 < x < 5} C = {3, 5} find A × (B ∩ C)


State True or False for the following statement.

If P = {1, 2}, then P × P × P = {(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)}


State True or False for the following statement.

If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, then (A × B) ∪ (A × C) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}.


The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×