Advertisements
Advertisements
प्रश्न
The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to ______.
पर्याय
2
1
3
4
उत्तर
The number of elements in the set {x ∈ R: (|x| –3)|x + 4| = 6} is equal to 2.
Explanation:
Given,
Case I: when x < – 4
Since, |x| = `{{:(x; x > 0),(-x; x < 0):}`
⇒ (–x – 3)(–x – 4) = 6
⇒ (x + 3)(x + 4) = 6
⇒ x2 + 7x + 6 = 0
⇒ (x + 6)(x + 1) = 0
⇒ x = –1 and –6
As x < –4 so for this case x = {–6}
Case II: when x ∈ [–4, 0)
Using |x| = `{{:(x; x ≥ 0),(-x; x < 0):}`
(–x – 3)(x + 4) = 6
⇒ x2 + 7x + 18 = 0
⇒ No solution (D < 0)
So, for this case x ∈ Φ
Case III: When x ≥ 0
(x – 3)(x + 4) = 6
⇒ x2 + x – 18 = 0
⇒ x = `(-1 +- sqrt(1 + 72))/2`
As x ≥ 0 so for this case x = `{(sqrt(73) - 1)/2}` So, final solution of the given equation are `x∈{-6(sqrt(73) - 1)/2}` Hence number of solution will be 2.