Advertisements
Advertisements
प्रश्न
Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that (A – B)C = AC – BC
उत्तर
A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]`
A – B = `[(1, 2),(1, 3)] - [(4, 0),(1, 5)]`
= `[(-3, 2),(0, -2)]`
(A – B)C = `[(-3, 2),(0, -2)] xx [(2, 0),(1, 2)]`
= `[(-6 + 2, 0 + 4),(0 - 2, 0 - 4)]`
= `[(-4, 4),(-2, -4)]` ...(1)
AC = `[(1, 2),(1, 3)] xx [(2, 0),(1, 2)]`
= `[(2 + 2, 0 + 4),(2 + 3, 0 + 6)]`
= `[(4, 4),(5, 6)]`
BC = `[(4, 0),(1, 5)] xx [(2, 0),(1, 2)]`
= `[(8 + 0, 0 + 0),(2 + 5, 0 + 10)]`
= `[(8, 0),(7, 10)]`
AC – BC = `[(4, 4),(5, 6)] - [(8, 0),(7, 10)]`
= `[(-4, 4),(-2, -4)]` ...(2)
From (1) and (2) we get
(A – B)C = AC – BC
APPEARS IN
संबंधित प्रश्न
If A = `[(5, 4, 3),(1, -7, 9),(3, 8, 2)]` then find the transpose of A
Find the values of x, y, z if `[(x), (y – z), (z + 3)] + [(y), (4), (3)] = [(4), (8), (16)]`
Construct an m × n matrix A = [aij], where aij is given by
aij = `|3"i" - 4"j"|/4` with m = 3, n = 4
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(A – B)T = AT – BT
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(BT)T = B
If A = `[(1, 2, 2),(2, 1, -2),(x, 2, y)]` is a matrix such that AAT = 9I, find the values of x and y
Choose the correct alternative:
If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is 3 × 3 identity matrix, then the ordered pair (a, b) is equal to
Choose the correct alternative:
A root of the equation `|(3 - x, -6, 3),(-6, 3 - x, 3),(3, 3, -6 - x)|` = 0 is
Choose the correct alternative:
If a ≠ b, b, c satisfy `|("a", 2"b", 2"c"),(3, "b", "c"),(4, "a", "b")|` = 0, then abc =
Let M = `[(0, -α),(α, 0)]`, where α is a non-zero real number an N = `sum_(k = 1)^49`M2k. If (I – M2)N = –2I, then the positive integral value of α is ______.